Trig Derivatives

$\frac{d}{d x} \sin x=$

$$
\frac{d}{d x} \tan x=\quad \frac{d}{d x} \sec x=
$$

$$
\frac{d}{d x} \cos x=
$$

$$
\frac{d}{d x} \cot x=
$$

$$
\frac{d}{d x} \csc x=
$$

Common struggles for students dealing with trig derivatives:

- Memorizing.
- Unit Circle values.
- Simplifying/manipulating trig expressions.
- Trig reciprocals in a calculator.

1. Find the derivative of $y=\sin x \tan x$
2. Find $f^{\prime}\left(\frac{\pi}{6}\right)$ if $f(x)=\frac{x}{\sec x}$
3. Estimate the derivative with a calculator of $g(x)=\csc ^{2} 4 x$ at $x=2$

Find the derivative of each function.

1. $y=5-\csc x$ 2. $h(x)=2 x \tan (x)$ 3. $r=\frac{\sin \theta}{\theta}$ 4. $g(x)=\frac{\cot x}{x}$ $5 . f(x)=\frac{1}{2 \cos x}$ $6 . y=5 x \sec x$
Find the derivative at the given x-value. Show your work!

7. $f(x)=3 \tan x$ at $x=\frac{2 \pi}{3}$.
8. $f(x)=2 \sec x$ at $x=\frac{\pi}{4}$.
9. $f(x)=x \cot x$ at $x=\frac{\pi}{6}$.

Estimate the derivative at the given \boldsymbol{x}-value by using a calculator.
10. $f(x)=\sin ^{2}\left(\frac{x}{5}\right)$ at $x=1.8$.
11. $f(x)=\frac{\cot \left(x^{2}\right)}{2}$ at $x=-1$.
12. $f(x)=3 \sec \left(e^{x}\right)$ at $x=2.5$.

Find the equations of both the normal line and the tangent line.
13. $y=\sec x$ at $x=\pi$
14. $y=\tan x$ at $x=\frac{\pi}{3}$

Tangent: \qquad

Normal: \qquad Normal: \qquad

2.10 Derivatives of $\tan x, \cot x, \sec x$, and $\csc x$

Evaluate each limit.
15. $\lim _{h \rightarrow 0} \frac{\tan \left(\frac{\pi}{3}+h\right)-\tan \left(\frac{\pi}{3}\right)}{h}=$
16. $\lim _{h \rightarrow 0} \frac{\sec \left(\frac{\pi}{6}+h\right)-\sec \left(\frac{\pi}{6}\right)}{h}=$

