Write your questions and thoughts here!

Trig Derivatives

$$\frac{d}{dx}\sin x =$$

$$\frac{d}{dx}\tan x =$$

$$\frac{d}{dx}\cot x =$$

$$\frac{d}{dx}\sec x =$$

$$\frac{d}{dx}\cos x =$$

$$\frac{d}{dx}\cot x =$$

$$\frac{d}{dx}\csc x =$$

Common struggles for students dealing with trig derivatives:

- Memorizing.
- Unit Circle values.
- Simplifying/manipulating trig expressions.
- Trig reciprocals in a calculator.
- 1. Find the derivative of $y = \sin x \tan x$

- 2. Find $f'\left(\frac{\pi}{6}\right)$ if $f(x) = \frac{x}{\sec x}$
- 3. Estimate the derivative with a calculator of $g(x) = \csc^2 4x$ at x = 2

2.10 Derivatives of $\tan x$, $\cot x$, $\sec x$, and $\csc x$

Find the derivative of each function.

1.
$$y = 5 - \csc x$$

$$2. \ h(x) = 2x \tan(x)$$

3.
$$r = \frac{\sin \theta}{\theta}$$

$$4. \quad g(x) = \frac{\cot x}{x}$$

$$5. \ f(x) = \frac{1}{2\cos x}$$

6.
$$y = 5x \sec x$$

Find the derivative at the given x-value. Show your work!

7.
$$f(x) = 3 \tan x$$
 at $x = \frac{2\pi}{3}$. 8. $f(x) = 2 \sec x$ at $x = \frac{\pi}{4}$.

8.
$$f(x) = 2 \sec x$$
 at $x = \frac{\pi}{4}$.

9.
$$f(x) = x \cot x$$
 at $x = \frac{\pi}{6}$.

Estimate the derivative at the given x-value by using a calculator.

10. $f(x) = \sin^2(\frac{x}{5})$ at x = 1.8.
11. $f(x) = \frac{\cot(x^2)}{2}$ at x = -1.

10.
$$f(x) = \sin^2\left(\frac{x}{5}\right)$$
 at $x = 1.8$

11.
$$f(x) = \frac{\cot(x^2)}{2}$$
 at $x = -1$

12.
$$f(x) = 3\sec(e^x)$$
 at $x = 2.5$.

Find the equations of both the normal line and the tangent line.

13.
$$y = \sec x$$
 at $x = \pi$

14.
$$y = \tan x \text{ at } x = \frac{\pi}{3}$$

Tangent: _____

Tangent:

Normal:

Normal:

2.10 Derivatives of $\tan x$, $\cot x$, $\sec x$, and $\csc x$

Test Prep

Evaluate each limit.

15.
$$\lim_{h\to 0} \frac{\tan(\frac{\pi}{3}+h)-\tan(\frac{\pi}{3})}{h} =$$

16.
$$\lim_{h \to 0} \frac{\sec(\frac{\pi}{6} + h) - \sec(\frac{\pi}{6})}{h} =$$