2.1 Average and Instantaneous Rate of Change

Calculus
Name:
Find the average rate of change of each function on the given interval. Use appropriate units if necessary.

1. $g(x)=4-x^{2} ; \quad[1,2]$
2. $f(x)=\sin x$ on the interval $2 \leq x \leq 5$.
3. $s(t)=t^{2}-5 t+4 ; \quad[-1,3]$
t represents minutes
s represents meters

Find the instantaneous rate of change of each function at the given x-value. Use the form $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$.
4. $f(x)=\frac{1}{3 x}$ at $x=4 \times$ 5. $f(x)=2 x^{2}+1$ at $x=-2$

Find the instantaneous rate of change of each function at the given x-value. Use the form $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
6. $f(x)=7 \sqrt{x}$ at $x=2$
7. $f(x)=5 x-2 x^{2}$ at $x=-2$

Each limit represents the instantaneous rate of change of a function. Identify the original function, and the x-value of the instantaneous rate of change.
8. $\lim _{x \rightarrow 1} \frac{\frac{1}{10+x}-\frac{1}{11}}{x-1} \quad$ Function: $f(x)=$

Instantaneous rate at $x=$
10. $\lim _{h \rightarrow 0} \frac{2(6+h)^{2}+(6+h)-3-(75)}{h}$

Function: $f(x)=$
Instantaneous rate at $x=$
9. $\lim _{h \rightarrow 0} \frac{2^{5+h}-2^{5}}{h}$ Function: $f(x)=$

Instantaneous rate at $x=$
11. $\lim _{x \rightarrow-3} \frac{\left(4 x^{2}+2 x\right)-(30)}{x+3}$

Function: $f(x)=$
Instantaneous rate at $x=$

$\begin{gathered} \varepsilon-=x \\ t=(x) f \cdot \tau I \end{gathered}$		$\begin{gathered} 9=x \\ \varepsilon-x+{ }_{z} x Z=(x) f \quad \text { oI } \end{gathered}$				$\begin{gathered} \mathrm{S}=x \\ x \mathrm{Z}=(x) \notin \quad 6 \end{gathered}$			$\begin{gathered} \mathrm{I}=x \\ \frac{x+0 \tau}{\tau}=(x) f \quad 8 \end{gathered}$				EL ${ }^{\circ}$	
$\frac{z \wedge \tau}{L} 9$		-					S.əəəせ] ε -		EZ9'0-		Z29'0-	' 7	ε	I

