2.1 Average and Instantaneous Rate of Change

Calculus

Find the average rate of change of each function on the given interval. Use appropriate units if necessary.

- 1. $g(x) = 4 x^2$; [1,2]
- 2. $f(x) = \sin x$ on the interval $2 \le x \le 5$.
- 3. $s(t) = t^2 5t + 4$; t represents minutes s represents meters

Find the instantaneous rate of change of each function at the given x-value. Use the form $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$

4. $f(x) = \frac{1}{3x}$ at x = 4

5. $f(x) = 2x^2 + 1$ at x = -2

Find the instantaneous rate of change of each function at the given x-value. Use the form $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$

6.
$$f(x) = 7\sqrt{x}$$
 at $x = 2$

7.
$$f(x) = 5x - 2x^2$$
 at $x = -2$

Each limit represents the instantaneous rate of change of a function. Identify the original function, and the x-value of the instantaneous rate of change.

8.
$$\lim_{x \to 1} \frac{\frac{1}{10+x} - \frac{1}{11}}{x-1}$$

Function: f(x) =

9. $\lim_{h \to 0} \frac{2^{5+h} - 2^5}{h}$ Function: f(x) =

Instantaneous rate at x =

Instantaneous rate at x =

10.
$$\lim_{h \to 0} \frac{2(6+h)^2 + (6+h) - 3 - (75)}{h}$$

Function: f(x) =

Function: f(x) =

Instantaneous rate at x =

Instantaneous rate at x =

= -3	x 11. f($x + {}^{2}x5 = (x) $ $0. $ $0. $ $0. $	$S = x$ $x = (x) \int_{0}^{x} (x) dx$	$\frac{1}{x+01} = (x) \frac{1}{1} .8$ $1 = x$	EI .7
<u>z^z</u> ⋅9	8-	ς 8ν - 'τ	33 meters per minute	20.622 or -0.623	£1