2.1 Average and Instantaneous Rate of Change

Calculus Name

CA #2

Find the average rate of change of each function on the given interval. Use appropriate units if necessary.

- 1. $h(x) = x^2 2$; [-1, 3]
- 2. $f(x) = \cos x$ on the interval $3 \le x \le 5$.
- 3. $b(w) = w + 2^w$; [-1,2] w represents window panes b represents cleaning bottles

Find the instantaneous rate of change of each function at the given x-value. Use the form $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$

4.
$$f(x) = \frac{3}{x}$$
 at $x = 4$

5.
$$f(x) = 4x^2 - 1$$
 at $x = 2$

Find the instantaneous rate of change of each function at the given x-value. Use the form $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$

6.
$$f(x) = \sqrt{5x}$$
 at $x = 1$

7.
$$f(x) = 4x - x^2 + 2$$
 at $x = -2$

Each limit represents the instantaneous rate of change of a function. Identify the original function, and the x-value of the instantaneous rate of change.

8.
$$\lim_{x \to -1} \frac{x^3 - 2x^2 + 3}{x + 1}$$

Function:
$$f(x) =$$

9.
$$\lim_{x \to 5} \frac{\frac{1}{x-3} - (\frac{1}{2})}{x-5}$$

Function:
$$f(x) =$$

Instantaneous rate at x =

Instantaneous rate at x =

$$10. \quad \lim_{h \to 0} \frac{\cos(\pi + h) + 1}{h}$$

11.
$$\lim_{h \to 0} \frac{2\ln(1+h)-0}{h}$$

Function: f(x) =

Function:
$$f(x) =$$

Instantaneous rate at x =

Instantaneous rate at
$$x =$$

8 .	$\begin{aligned} \xi + ^2x - ^2x - ^2x = (x) & \\ 1 - & = x \end{aligned}$	$\frac{t}{\varepsilon - x} = (x) y . (6)$	$x \cos = (x) y .01$ $\pi = x$	= x	x ul z = 0
z ·	788.0 10 888.0 .2	3. $\frac{13}{6}$ bottles per window	± − .4	91 '9	<u>5</u> ^2 ⋅9