Write your questions and thoughts here!

Recall: Rate of Change

Average rate of change on the interval [a, b] is represented by

Average rate of change from a function. Find the average rate of change of $f(x) = \ln 3x$ over the interval $1 \le x \le 4$.

Average rate of change from a table.

x	0	2	7	30
f(x)	3	-2	5	7

Find the average rate of change over the interval $2 \le x \le 30$.

Average Rate of Change:

The following quotients express the average rate of change of a function over an interval.

$$\frac{f(a+h)-f(a)}{(a+h)-a}$$
 or $\frac{f(x)-f(a)}{x-a}$

This is also the

of the line.

Instantaneous Rate of Change:

The following limits express the *instantaneous* rate of change of a function at x = a.

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \quad \text{or} \quad \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

This is also the c

of the line.

2.1 Average and Instantaneous Rate of Change

Calculus

Practice

Find the average rate of change of	each function on th	ne given interval. 🛛	Use appropriate units if necessary.
1. $f(x) = x^2 - 2;$ [-1,3]	2. $A(t) = 2^t$; [2 t represents ye A represents d	ears	3. $h(m) = \tan(m) + 4; \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ <i>h</i> represents hair <i>m</i> represents months
4. $a(x) = \ln x$ on the interval $2 \le x$	≤ 7.	5. $f(x) = \cos x$	on the interval $-1 \le x \le 0$.

Find the instantaneous rate of change of each function at the given <i>x</i> -value. Use the form $\lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$.						
15. $f(x) = x^2 - x$ at $x = -1$	16. $f(x) = \sqrt{x}$ a	t x = 5	17. $f(x) = \frac{1}{x}$ at $x = 2$			
			$f(\gamma) - f(q)$			
Find the instantaneous rate of char 18. $f(x) = 2x^2 + 3x - 4$ at $x = -3$	ige of each function	n at the given <i>x</i> -val	lue. Use the form $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.			
18. $f(x) = 2x^2 + 3x - 4$ at $x = -3$	19. $f(x) = \sqrt{3}x$	at $x = 7$	20. $f(x) = \frac{1}{5x}$ at $x = -2$			
Each limit represents the instantaneous rate of change of a function. Identify the original function, and the x-value of the instantaneous rate of change.						
21. $\lim_{x \to 7} \frac{\frac{1}{\sqrt{x^2 - 2x}} - \frac{1}{\sqrt{35}}}{x - 7}$	22. $\lim_{x \to -2} \frac{(3x - 9x^2)}{x + 3x^2}$)+(42) 2	23. $\lim_{h \to 0} \frac{3 \ln(2+h) - 3 \ln 2}{h}$			
Function: $f(x) =$	Function: $f(x) =$		Function: $f(x) =$			
Instantaneous rate at $x =$	Instantaneous rate	at $x =$	Instantaneous rate at $x =$			
24. $\lim_{h \to 0} \frac{3(1+h)^2 - 7(1+h) + 1 + (3)}{h}$	25. $\lim_{x \to \frac{\pi}{2}} \frac{6x^2 \sin x - \frac{3\pi^2}{2}}{x - \frac{\pi}{2}}$		26. $\lim_{h \to 0} \frac{\log(2 - 4(h - 5)) - \log(22)}{h}$			
Function: $f(x) =$	Function: $f(x) =$		Function: $f(x) =$			
Instantaneous rate at $x =$	Instantaneous rate	at $x =$	Instantaneous rate at $x =$			
27. $\lim_{x \to 5} \frac{\frac{1}{\sqrt{3x}} - \frac{1}{\sqrt{15}}}{x - 5}$	1	28. $\lim_{h \to 0} \frac{e^{6(3+h)+1}}{h}$	-e ¹⁹			
Function: $f(x) =$		Function: $f(x) =$				
Instantaneous rate at $x =$		Instantaneous rate at $x =$				
		l				

2.1 Average and Instantaneous Rate of Change

- Test Prep
- 29. Let f be the function defined by $f(x) = \ln 7x$. The average rate of change of f over the interval [2, a] is 41, where a > 2. Which of the following is an equation that could be used to find the value of a?

(A)	f(a) = 41	(B)	f(a) - f(2) = 41
(C)	$\frac{f(a) - f(2)}{a - 2} = 41$	(D)	$\frac{f(a)+f(2)}{2} = 41$

30. Find the average rate of change of $f(x) = \sin x \ln x$ on the interval $1 \le x \le a$.

31. Today's school lunch was inappropriately thrown over the school fence by Mr. Kelly. For $0 \le t \le 90$, the amount of food remaining (assuming no animals eat it) is modeled by $F(t) = 544.311(0.907)^t$, where F(t) is measured in grams and t is measured in days. Find the average rate of change of F(t) over the interval $0 \le t \le 90$. Indicate units of measure.

32.

A continuous function f is shown above and defined on the closed interval $-5 \le x \le 4$. For how many values of b, -5 < b < 4, is the average rate of change of f on the interval [b, 1] equal to 0? Give a reason for your answer.