Recall: Rate of Change

$$
\text { Average rate of change on the interval }[a, b] \text { is represented by }
$$

Average rate of change from a function.

Find the average rate of change of $f(x)=\ln 3 x$ over the interval $1 \leq x \leq 4$.

Average rate of change from a table.

x	0	2	7	30
$f(x)$	3	-2	5	7

Find the average rate of change over the interval $2 \leq x \leq 30$.

Average Rate of Change:

The following quotients express the average rate of change of a function over an interval.

$$
\frac{f(a+h)-f(a)}{(a+h)-a} \text { or } \frac{f(x)-f(a)}{x-a}
$$

This is also the of the line.

Instantaneous Rate of Change:

The following limits express the instantaneous rate of change of a function at $x=a$.

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { or } \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

This is also the of the line.

Write your questions and thoughts here!

Find the instantaneous rate of change of $f(x)=x-x^{2}$ at $x=-1$.

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Identify the function we are working with. Then identify the x-value for the instantaneous rate of change (slope of the tangent line at a point).

1. $\lim _{h \rightarrow 0} \frac{5 \ln \left(\frac{2}{4+h}\right)-5 \ln \left(\frac{1}{2}\right)}{h}$

Function: $f(x)=$

Instantaneous rate at $x=$
2. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x-1}{x-\frac{\pi}{2}}$

Function: $f(x)=$
Instantaneous rate at $x=$

2.1 Average and Instantaneous Rate of Change

Practice

Find the average rate of change of each function on the given interval. Use appropriate units if necessary.

1. $f(x)=x^{2}-2 ; \quad[-1,3]$
2. $A(t)=2^{t} ;[2,4]$ t represents years A represents dollars
3. $h(m)=\tan (m)+4 ;\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$
h represents hair m represents months
4. $a(x)=\ln x$ on the interval $2 \leq x \leq 7$.
5. $f(x)=\cos x$ on the interval $-1 \leq x \leq 0$.

Use the following table to find the average rate of change on the given interval.
6. $[3,13]$

t (Minutes)	0	3	4	12	13
$s(t)$ (Feet)	-2	4	-7	5	10

7. $0 \leq x \leq 12$
8. $[3,4]$

Use the following graph to find the average rate of change on the given interval.

9. $-5 \leq x \leq-2$
10. $[-1,5]$
11. $-4 \leq x \leq-2$

The graphs of \boldsymbol{f} and \boldsymbol{g} are given below. For each function, find the average rate of change on the given interval.

12. $h(x)=f(x)+g(x)$ on $[-4,3]$
13. $k(x)=f(g(x))$ on $[-4,0]$
14. $w(x)=g(f(x))$ on $[-2,3]$

15. $f(x)=x^{2}-x$ at $x=-1$ Find the instantaneous rate of change of each function at the given x-value. Use the form $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
 18. $f(x)=2 x^{2}+3 x-4$ at $x=-3$ $19 . f(x)=\sqrt{x}$ at $x=5$ 17. $f(x)=\frac{1}{x}$ at $x=2$

Each limit represents the instantaneous rate of change of a function. Identify the original function, and the x-value of the instantaneous rate of change.
21. $\lim _{x \rightarrow 7} \frac{\frac{1}{\sqrt{x^{2}-2 x}}-\frac{1}{\sqrt{35}}}{x-7}$

Function: $f(x)=$
Instantaneous rate at $x=$
24. $\lim _{h \rightarrow 0} \frac{3(1+h)^{2}-7(1+h)+1+(3)}{h}$

Function: $f(x)=$
Instantaneous rate at $x=$
22. $\lim _{x \rightarrow-2} \frac{\left(3 x-9 x^{2}\right)+(42)}{x+2}$

Function: $f(x)=$
Instantaneous rate at $x=$
25. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{6 x^{2} \sin x-\frac{3 \pi^{2}}{2}}{x-\frac{\pi}{2}}$

Function: $f(x)=$
Instantaneous rate at $x=$
23. $\lim _{h \rightarrow 0} \frac{3 \ln (2+h)-3 \ln 2}{h}$

Function: $f(x)=$
Instantaneous rate at $x=$
26. $\lim _{h \rightarrow 0} \frac{\log (2-4(h-5))-\log (22)}{h}$

Function: $f(x)=$
Instantaneous rate at $x=$

Function: $f(x)=$
Instantaneous rate at $x=$
27. $\lim _{x \rightarrow 5} \frac{\frac{1}{\sqrt{3 x}}-\frac{1}{\sqrt{15}}}{x-5}$
28. $\lim _{h \rightarrow 0} \frac{e^{6(3+h)+1}-e^{19}}{h}$

Function: $f(x)=$
Instantaneous rate at $x=$

2.1 Average and Instantaneous Rate of Change

Test Prep

29. Let f be the function defined by $f(x)=\ln 7 x$. The average rate of change of f over the interval $[2, a]$ is 41 , where $a>2$. Which of the following is an equation that could be used to find the value of a ?
(A) $\quad f(a)=41$
(B) $\quad f(a)-f(2)=41$
(C) $\frac{f(a)-f(2)}{a-2}=41$
(D) $\frac{f(a)+f(2)}{2}=41$
30. Find the average rate of change of $f(x)=\sin x \ln x$ on the interval $1 \leq x \leq a$.
31. Today's school lunch was inappropriately thrown over the school fence by Mr. Kelly. For $0 \leq t \leq 90$, the amount of food remaining (assuming no animals eat it) is modeled by $F(t)=544.311(0.907)^{t}$, where $F(t)$ is measured in grams and t is measured in days. Find the average rate of change of $F(t)$ over the interval $0 \leq$ $t \leq 90$. Indicate units of measure.
32.

A continuous function f is shown above and defined on the closed interval $-5 \leq x \leq 4$. For how many values of $b,-5<b<4$, is the average rate of change of f on the interval $[b, 1]$ equal to 0 ? Give a reason for your answer.

