Find the derivative using limits. If the equation is given as $y=$, use Leibniz Notation: $\frac{d y}{d x}$. If the equation is given as $\boldsymbol{f}(\boldsymbol{x})=$, use Lagrange Notation: $\boldsymbol{f}^{\prime}(\boldsymbol{x})$. WRITE SMALL!!

1. $y=2+10 x-x^{2}$
2. $f(x)=\frac{1}{x+7}$
3. $y=\sqrt{6 x+5}$

For each problem, create an equation of the tangent line of \boldsymbol{f} at the given point.
4. $f(6)=2$ and $f^{\prime}(6)=-8$
5. $f(x)=2 x-3 x^{2}$ $f^{\prime}(x)=2-6 x ; \quad x=-2$
6. $f(x)=\tan (5 x)$
$f^{\prime}(x)=5 \sec ^{2}(5 x) ; x=\frac{\pi}{20}$

For each problem, use the information given to identify the meaning of the two equations in the context of the problem. Write in full sentences!
7. W is the amount of water (measured in gallons) in Mr. Brust's hot tub.
t is the number of minutes since Mr. Brust unplugged the drain for the function $W(t)$. $W(10)=13$ and $W^{\prime}(7)=-4.3$
8. $V(t)$ is the volume of an ice cube measured in cubic centimeters and t is the number of seconds since the ice cube was plated on a plate.

$$
V(135)=28 \text { and } V(1000)=-0.02
$$

