2.2 Defining the Derivative

This derivative is an expression that calculates the instantaneous rate of change (slope of the tangent line) of a function at any given x-value. In other words, it gives us the slope of the function at a point!

$$
\begin{gathered}
f^{\prime}(x)=2 x \\
f^{\prime}(1)= \\
f^{\prime}(2)= \\
f^{\prime}(-2)=
\end{gathered}
$$

1. If $f^{\prime}(x)=\frac{5}{x}-x$, find $f^{\prime}(2)$ and explain the meaning.
2. If $f(x)$ represents how many meters you have run and x represents the minutes, describe in full sentences the following:

$$
f(8)=1,500
$$

$$
f^{\prime}(3)=161
$$

Notation for the Derivative:

Lagrange

Defintion of the Derivative:

This limit gives an expression that calculates the instantaneous rate of change (slope of the tangent line) of $f(x)$ at any given x-value.

Find the derivative using the Definition of the Derivative (limits).
3. $f(x)=2 x^{2}-7 x+1$
4. $y=\frac{1}{x^{2}}$

Equation of the Tangent Line:

The line tangent to the curve of $f(x)$ at $x=a$ can be represented in point-slope form:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

5. If we know $h(5)=-2$, and the derivative of h is given by $h^{\prime}(x)=\frac{x^{3}-2}{x}$, write an equation for the line tangent to the graph of h at $x=5$.
6. The graph of $f^{\prime}(x)$, the derivative of f, is shown at the right. If $f(2)=7$, write an equation of the line tangent to the graph of f at $(2,7)$.

Find the derivative using limits. If the equation is given as $y=$, use Leibniz Notation: $\frac{d y}{d x}$. If the equation is given as $\boldsymbol{f}(\boldsymbol{x})=$, use Lagrange Notation: $\boldsymbol{f}^{\prime}(\boldsymbol{x})$. WRITE SMALL!!

1. $f(x)=7-6 x$
2. $y=5 x^{2}-x$
3. $y=\sqrt{5 x+2}$
4. $f(x)=\frac{1}{x-2}$

For each problem, use the information given to identify the meaning of the two equations in the context of the problem. Write in full sentences!
5. C is the number of championships Sully has won while coaching basketball. t is the number of years since 2002 for the function $C(t)$.
$C(12)=3$ and $C^{\prime}(12)=0.4$
6. d is the distance (in miles) from home when you walk to school. h is the number of hours since 7:00 a.m. for the function $d(h)$.
$d(0.5)=1.2$ and $d^{\prime}(0.5)=-11$
7. W is the number of cartoon shows Mr. Kelly watches every week. x is the number of children Mr. Kelly has for the function $W(x)$.
$W(7)=25$ and $W^{\prime}(7)=3$
8. g is the number of gray hairs on Mr. Brust's head.
x is the number of students in his $4^{\text {th }}$ period.
$g(26)=501$ and $g^{\prime}(15)=130$

For each problem, create an equation of the tangent line of \boldsymbol{f} at the given point. Leave in point-slope.
\(\left.\begin{array}{l|l|l}9. f(7)=5 and f^{\prime}(7)=-2 \& 10. f(-2)=3 and f^{\prime}(-2)=4 \& 11 . f(x)=3 x^{2}+2 x ;

f^{\prime}(x)=6 x+2 ; x=-2\end{array}\right]\)| |
| :--- |

2.2 Defining the Derivative

15. Let $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$. For what value of x does $f(x)=4$?
(A) -4
(B) -1
(C) 1
(D) 2
(E) 4
16. The graph of the function f, along with a table of values, are shown below. Approximate the value of $f^{\prime}(5.5)$ using data from the table. Show computations that lead to your answer.

x	4.5	5	5.5	6	6.5	7
$f(x)$	2.169	2.321	2.459	5	4.5	4

17. The figure below shows the graph of the line tangent to the graph of f at $x=0$.

Of the following, which must be true?
(A) $f^{\prime}(0)=-f(0)$
(B) $f^{\prime}(0)=f(0)$
(C) $f^{\prime}(0)>f(0)$
(D) $f^{\prime}(0)<f(0)$

