2.3 Estimating Derivatives

Notes

Write your questions and thoughts here!

Calculus

1. If $f(x) = \sin \sqrt{x}$, find f'(2).

2. If
$$f(x) = \ln\left(\frac{1}{5-x}\right)$$
, find $f'(1.3)$.

3. Write the equation of the line tangent to $y = \sqrt{\frac{x}{x^3+1}}$ at x = 1.

Estimating the Derivative from TABLES

The function must be differentiable to estimate a derivative! This just means, the graph is **continuous** and **smooth**.

x hours	0	2	4	7	11
$\begin{array}{c} f(x) \\ \text{miles} \end{array}$	-2	3	10	1	-3

Using the table, estimate f'(3). Show the work that leads to your answer.

<i>x</i> Seconds	10	50	80	120	150
w(x) Gallons per second	950	850	700	500	150

Using the table, estimate w'(100). Show the work that leads to your answer.

2.3 Estimating Derivatives

Calculus

Estimate the derivative at the given	point by using a calculator.	
1. $f(x) = x\sqrt{2-x}$; find $f'(-10)$.		3. $f(x) = \ln(\sqrt{x})$; find $f'(1)$.
4. $f(x) = e^{\frac{x}{3}}$; find $f'(4)$.	5. $f(x) = \tan(\sin x)$; find $f'(-3)$	6. $f(x) = 2^{\ln(x)}$; find $f'(2)$.
7. The model $f(t) = \frac{x}{\cos x}$ measures the height of bird in meters where <i>t</i> is seconds. Find f'(2).	8. The model $f(t) = \sin^2(t)$ measures the depth of a submarine measured in feet where <i>t</i> is minutes. Find f'(12.5).	9. The model $f(t) = \sqrt{x} - \frac{1}{x-1}$ measures the number of stocks sold where <i>t</i> is days. Find f'(12)
For each function, write the equation		
10. $f(x) = \frac{\ln 2x}{4x}$ at $x = 1$.	11. $f(x) = \cos \left(\int_{-\infty}^{\infty} f(x) - \int_{-\infty}^{\infty} f(x) \right)$	$(\tan(x))$ at $x = 2$.
12. $f(x) = \frac{x^4}{\sqrt{x}}$ at $x = 3$.	13. $f(x) = x^2$	$\sin\left(\frac{1}{x}\right)$ at $x = 7$.

Use the tables to estimate the value of the derivative at the given point. Indicate units of measures. 14.

	x Hours	1	3	4	7	9
	v(x) visitors	120	476	595	807	902
a. v'(8)				b. v'(3.5)		

Practice

1	5	
T	J	•

15.						<u> </u>	
	x cm	11	23	26	32	45	
	T(x) °C	71	51	40	36	10	
. T'(17)				b. <i>T</i> ′(24.5)	<u> </u>	
6.							
	t	0	3	7	15	20	
	$\frac{\text{years}}{s(t)}$						
	Students per year	5	20	7	-2	-4	
a. <i>s</i> ′(1.5)	por jour			b. s'(11)		<u> </u>	
17.		I					
	t Days	5	13	45	50	70	
	p(t)Pages per	51	20	21	36	58	
	day		_~				
a. $p'(47.5)$				b. p'(9)			
18.			1	· · · · ·			
	<i>x</i> seconds	10	30	45	65	100	
	w(x)	1005	790	786	434	209	
_	Gallons per second	1002	/90			209	
a. w'(20)				b. w'(82.5	5)		
19.							
	X Carries	3	12	15	21	30	
	$\frac{\text{Carries}}{f(x)}$	15	107	98	150	272	
a. $f'(25.5)$	yards	15	107	b. f'(13.5			
					,		

2.3 Estimating Derivatives

20. Let *f* and *g* be the functions defined by $f(x) = -\frac{1}{2}x^3 + 3x + 1$ and $g(x) = e^{\frac{x}{2}}$. Let *h* be the vertical distance between the graphs of *f* and *g* for $0 \le x \le 2$. Find the rate at which *h* changes with respect to *x* when x = 1.5.

21. The graph of $y = 3 - e^{5x}$ crosses the x-axis at one point. What is the slope of the graph at this point?

22. Given the function $g(x) = x^3 - e^x - \sin x$, which of the following values of x has a tangent line with the greatest slope?

(A)
$$x = -3$$
 (B) $x = -1$ (C) $x = 0$ (D) $x = 1$ (E) $x = 3$

Test Prep