Estimating the Derivative with a CALCULATOR

1. If $f(x)=\sin \sqrt{x}$, find $f^{\prime}(2) . \quad$ 2. If $f(x)=\ln \left(\frac{1}{5-x}\right)$, find $f^{\prime}(1.3)$.
2. Write the equation of the line tangent to $y=\sqrt{\frac{x}{x^{3}+1}}$ at $x=1$.

Estimating the Derivative from TABLES

The function must be differentiable to estimate a derivative! This just means, the graph is continuous and smooth.

x hours	0	2	4	7	11
$f(x)$ miles	-2	3	10	1	-3

Using the table, estimate $f^{\prime}(3)$. Show the work that leads to your answer.

x Seconds	10	50	80	120	150
$w(x)$ Gallons per second	950	850	700	500	150

Using the table, estimate $w^{\prime}(100)$. Show the work that leads to your answer.

2.3 Estimating Derivatives

Practice

Estimate the derivative at the given point by using a calculator.

1. $f(x)=x \sqrt{2-x}$; find $f^{\prime}(-10)$.	2. $f(x)=\sec (5 x)$; find $f^{\prime}(2)$.	3. $f(x)=\ln (\sqrt{x})$; find $f^{\prime}(1)$.
4. $f(x)=e^{\frac{x}{3}}$; find $f^{\prime}(4)$.	5. $f(x)=\tan (\sin x)$; find $f^{\prime}(-3)$.	6. $f(x)=2^{\ln (x)}$; find $f^{\prime}(2)$.
7. The model $f(t)=\frac{x}{\cos x}$ measures the height of bird in meters where t is seconds. Find $f^{\prime}(2)$.	8. The model $f(t)=\sin ^{2}(t)$ measures the depth of a submarine measured in feet where t is minutes. Find $f^{\prime}(12.5)$.	9. The model $f(t)=\sqrt{x}-\frac{1}{x-1}$ measures the number of stocks sold where t is days. Find $f^{\prime}(12)$

10. $f(x)=\frac{\ln 2 x}{4 x}$ at $x=1$.
11. $f(x)=\cos (\tan (x))$ at $x=2$.
12. $f(x)=\frac{x^{4}}{\sqrt{x}}$ at $x=3$.
13. $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ at $x=7$.

Use the tables to estimate the value of the derivative at the given point. Indicate units of measures.
14.
a. $\quad v^{\prime}(8)$

x Hours	1	3	4	7	9
$v(x)$ visitors	120	476	595	807	902

b. $v^{\prime}(3.5)$
15.
a. $T^{\prime}(17)$

x cm	11	23	26	32	45
$T(x)$ ${ }^{\circ} \mathrm{C}$	71	51	40	36	10

16.

a. $s^{\prime}(1.5)$

t years	0	3	7	15	20
$s(t)$ Students per year	5	20	7	-2	-4

b. $s^{\prime}(11)$
17.
a. $p^{\prime}(47.5)$

t Days	5	13	45	50	70
$p(t)$ Pages per day	51	20	21	36	58

b. $p^{\prime}(9)$
18.
a. $w^{\prime}(20)$

x seconds	10	30	45	65	100
$w(x)$ Gallons per second	1005	790	786	434	209

b. $w^{\prime}(82.5)$
19.
a. $f^{\prime}(25.5)$

x Carries	3	12	15	21	30
$f(x)$ yards	15	107	98	150	272

2.3 Estimating Derivatives

20. Let f and g be the functions defined by $f(x)=-\frac{1}{2} x^{3}+3 x+1$ and $g(x)=e^{\frac{x}{2}}$. Let h be the vertical distance between the graphs of f and g for $0 \leq x \leq 2$. Find the rate at which h changes with respect to x when $x=1.5$.

21. The graph of $y=3-e^{5 x}$ crosses the x-axis at one point. What is the slope of the graph at this point?
22. Given the function $g(x)=x^{3}-e^{x}-\sin x$, which of the following values of x has a tangent line with the greatest slope?
(A) $x=-3$
(B) $x=-1$
(C) $x=0$
(D) $x=1$
(E) $x=3$
