Identify any x-values of the function that are not continuous and/or not differentiable.

1.

x-values where the function is not continuous.

$$X = 1$$

x-values where the function is continuous, but not differentiable.

2.

x-values where the function is not continuous.

$$x = -4$$

x-values where the function is continuous, differentiable.

$$x = 0$$

$$x = 5$$

3.

x-values where the function is not continuous.

$$x = -5$$

$$x = \lambda$$

x-values where the function is continuou differentiable.

$$x = -3$$

$$X = O$$

- 4. f is continuous for $a \le x \le b$ but not differentiable for some c such that a < c < b. Which of the following could be true?
 - (A) x = c is a vertical asymptote of the graph of f.
- (B) $\lim_{x \to c} f(x) \neq f(c)$
- (C) The graph of f has a cusp at x = c.

(D) f(c) is undefined.

- (E) None of the above
- 5. If g is differentiable at x = c, which of the following must be true?
 - I. g is continuous at x = c.
 - II. $\lim_{x \to c} g(x)$ exists.
 - III. $\lim_{x \to c} \frac{g(x) g(c)}{x c}$ exists.
 - (A) I only

(B) II only

(C) III only

(D) I and II only

- (E) I, II, and III
- 6. Let h be the function given by h(x) = |x 4|. Which of the following statements about h are true?
 - I. h is continuous at x = 4.
 - II. h is differentiable at x = 4.
 - III. h has an absolute minimum at x = 4.
 - (A) I only

(B) II only

(C) III only

- (D) I and III only
- (E) II and III only
- 7. If f is a differentiable function such that f(2) = 5 and f'(2) = 7, which of the following statements could be false?
 - $(A) \quad \lim_{x \to 2} f(x) = 5$
- (B) $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$
- (C) $\lim_{x \to 2} \frac{f(x) 5}{x 2} = 7$

- (D) $\lim_{h\to 0} \frac{f(2+h)-5}{h} = 7$
- (E) $\lim_{h\to 0} f'(x) = 7$