Write your questions and thoughts here!

Function	Function's Derivative	
$f(x) = x^2$	f'(x) =	
$f(x) = x^3$	f'(x) =	
$f(x) = x^4$	f'(x) =	
$f(x) = x^5$	f'(x) =	

The Power Rule

$$f(x) = x^n$$
$$f'(x) =$$

$$f'(x) =$$

Easy examples 1. $y = x^{37}$

1.
$$y = x^{37}$$

2.
$$y = x^9$$

Not as easy examples:

4

J.		т.	
Function	$y = \frac{1}{x}$	Function	$y = \frac{1}{x^4}$
Rewrite		Rewrite	
Differentiate		Differentiate	
Simplify (rewrite)		Simplify (rewrite)	

5.

6.

Function	$y = \sqrt{x}$	Function	$y = \sqrt[7]{x^3}$
Rewrite		Rewrite	
Differentiate		Differentiate	
Simplify (rewrite)		Simplify (rewrite)	

Tricky examples: Simplify first, then take the derivative.

$$7. \ f(x) = \frac{x}{\sqrt{x}}. \text{ Find } f'(7)$$

8.
$$f(x) = \sqrt[3]{x}(x^3)$$
. Find $f'(8)$

Parallel Tangent Lines

9. Let $f(x) = x^4$ and $g(x) = x^3$. At what value(s) of x do the graphs of f and g have parallel tangent lines.

2.5 The Power Rule

Practice

Calculus

Find		$\frac{dy}{dx}$.	
1.	ν	=	x^7

2. y = x

- 3. $y = x^{\pi}$
- 4. $y = \frac{1}{x^5}$

5.
$$y = \frac{1}{\sqrt[4]{x}}$$

- 6. $y = \sqrt[9]{x^4}$
- $7. \quad y = \sqrt[3]{x}$
- 8. $y = x^e$

9.
$$y = \frac{x}{\sqrt[3]{x}}$$

10. $y = x^2 (\sqrt[6]{x^5})$

Find f'(a) for each function at the given value of a.

- 11. $f(x) = x^4$ find f'(-1)
- 12. $f(x) = \sqrt{x}$ find f'(16)
- 13. $f(x) = \frac{1}{x^4}$ find f'(2).
- 14. $f(x) = \frac{1}{\sqrt[3]{x}}$ find f'(27).

Find the equation of the tangent line of each function at the given value of x.

15. $y = x^3$ at x = -216. $f(x) = \sqrt[4]{x^3}$ at x = 117.

15.
$$y = x^3$$
 at $x = -2$

16.
$$f(x) = \sqrt[4]{x^3}$$
 at $x = 1$

17.
$$f(x) = \frac{1}{x^4}$$
 at $x = 2$

When do the two functions listed have parallel tangent lines?

18.
$$f(x) = x^2$$
 and $g(x) = x^5$.

19.
$$f(x) = \sqrt{x}$$
 and $g(x) = x^3$. Use a calculator.

2.5 The Power Rule

Test Prep

20.
$$\lim_{x \to e} \frac{(x^3) - (e^3)}{x - e}$$
 is

(A) 0

- (B) $3e^2$
- (C) e^3

(D) does not exist

21.
$$\lim_{h\to 0} \frac{\sqrt{(25+h)}-(5)}{h}$$
 is

- (A) 0
- (B) 5
- (C) $\frac{1}{5}$
- (D) $\frac{1}{10}$
- (E) $\frac{1}{25}$

22. Given $f'(x) = \frac{1}{x}$ and f(2) = 5, write an equation for the line which is tangent to the graph of f(x) at the point where x = 2.

(A)
$$y = \frac{1}{2}x - \frac{1}{2}$$

(B)
$$y = \frac{1}{5}x + 5$$

(C)
$$y = \frac{1}{2}x + 4$$

(D)
$$y = \frac{1}{5}x - \frac{23}{5}$$

(E)
$$y = \frac{1}{2}x + 5$$

- 23. In the figure to the right, line L is tangent to the graph of $y = x^3$ at point A with coordinates (a, a^3) . Line L crosses the *x*-axis at point B, with coordinates (b, 0).
 - a. Find b in terms of a.

b. Find the value of b when a = 9.