
Calculus

Write your questions and thoughts here!

Derivative Rules Constant: $\frac{d}{dx}c =$ Constant Multiple: $\frac{d}{dx}cu =$ Sum/Difference: $\frac{d}{dx}(u \pm v) =$ Find the derivative of each function. 2. $y = 8\sqrt{x} - \frac{x^6}{3} + 2\pi^5$ 1. $y = 2x^2 - \frac{5}{x} + 6$ **Horizontal Tangent Lines** When does a function have a horizontal tangent line? The slope of a horizontal tangent line is zero. To find where a function has a horizontal tangent line, we set the derivative equal to zero. Х 3. Find the *x*-values of any horizontal tangent lines of $f(x) = 4x^2 + 7x - 13.$ Normal Lines A normal line goes through the same point the tangent line does, but it is perpendicular to the

- tangent line.
- 4. Find an equation of the NORMAL line of $f(x) = x^3 4x^2 + x + 3$ at x = 3.

2.6 Constant, Constant Multiple, Sum/Difference Rules Calculus

Practice

Calculus					
Find the derivative of each function.					
1. $f(x) = 2x^3 - 4x + 5$ 2.	$g(x) = 5x^{-2} - \frac{1}{2}x^4$	3. $y = 2e^4 - 3x$	4. $y = \pi x^2 - \pi$		
5. $y = 3x^2 - \frac{1}{6x^2}$	6. $h(x) = \frac{x^6}{3} + 6$	$4x^{2/3} - 4x^{1/2} + 2 7. f(x)$	$) = \frac{1}{\sqrt{x}} + \frac{3}{5x}$		
8. $f(x) = \sqrt{x} + 3\sqrt[3]{x} + 2$	9. $f(x) = 3x^7 - $	$4x^3 + 5x + 7$ 10. y	$=4\sqrt{x}+e$		

Find the <i>x</i> -value(s) where the fun	ction has a horizontal tangent.	
11. $f(x) = \frac{x^3}{3} + 4x^2 + 12x - 13$		13. $f(x) = \frac{x^4}{4} - \frac{10x^3}{3} + \frac{21}{2}x^2 + \frac{6}{5}$
11. $f(x) = \frac{1}{3} + 4x + 12x = 15$	12. $f(x) = \frac{1}{2} + x + \frac{1}{2} + 7$	13. $f(x) = \frac{1}{4} = \frac{1}{3} + \frac{1}{2}x + \frac{1}{5}$
Find the equations of the tangent $14 - f(x) = 2\sqrt{x} + 4$ at $x = 4$	AND normal lines of each function $x^2 = 3$	at the given value of x. 16. $f(x) = -x^3 + 2x^2 - 2$ at $x = 2$
14. $f(x) = 3\sqrt{x} + 4$ at $x = 4$	15. $y = \frac{x^2}{2} + \frac{3}{2}x - 2$ at $x = 8$	$\begin{bmatrix} 10. & f(x)x & +2x & -2 & \text{at } x = 2 \\ \end{bmatrix}$
		Tanaat
Tangent:	Tangent:	Tangent:
Tangent: Normal:	Tangent:	Tangent:
Normal:	Normal:	
Normal:	Normal:	Normal:

What values of <i>a</i> and <i>b</i> would make the function differentiable at the given value of <i>x</i> ?				
20. At $x = -1$	21. At $x = 2$.	22. At $x = 1$.		
$f(x) = \begin{cases} a\sqrt[3]{x} + x^2 - 2, & x < -1\\ bx + 1, & x \ge -1 \end{cases}$	21. At $x = 2$. $f(x) = \begin{cases} ax^4 + x + 4, & x < 2 \\ bx - 5, & x \ge 2 \end{cases}$	$f(x) = \begin{cases} \frac{a}{x^2} + x^3 - 2, & x \le 1 \end{cases}$		
		$(x^2 + bx + 1, x > 1$		
	1	1		

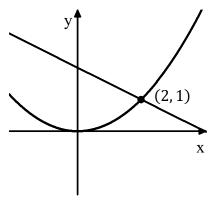
2.6 Constant, Constant Multiple, Sum/Difference Rules

23. Given $g(x) = 2x^5 + \frac{b}{x^2}$ where b is a constant, find the value of b if g'(2) = 180.

(A)	10	(B)	20	(C)	-40	(D)	80	(E)	none of these
-----	----	-----	----	-----	-----	-----	----	-----	---------------

Test Prep

- 24. Calculator required. Which of the following is an equation of the line tangent to the graph of $f(x) = x^6 x^4$ at the point where f'(x) = -1?
 - (A) y = -x 1.031(B) y = -x - 0.836(C) y = -x + 0.836(D) y = -x + 0.934(E) y = -x + 1.031


25. $\lim_{h \to 0} \frac{3(x+h)^2 + \frac{2}{x+h} - 3x^2 - \frac{2}{x}}{h}$ is

(A) $x^3 + \frac{2}{x}$ (B) $3x^2 + \frac{2}{x}$ (C) $6x - \frac{2}{x^2}$

(D) $6x + \frac{2}{x^2}$ (E) nonexistent

26. The functions f and g are given by $f(x) = \frac{x^2}{4}$ and $g(x) = -\frac{1}{2}x + 2$.

There is a point *P* on the graph of *f* for $x \ge 0$ at which the line tangent to the graph of *f* is perpendicular to the graph of *g*. Find the coordinates of point *P*.

27.

$$d(t) = \begin{cases} 20t + t^2 - \frac{t^3}{6}, & 0 \le t < 3\\ g(t), & 3 \le t \le 16 \end{cases}$$

t (days)	3	8	12	16
g(t) (cubic feet)	64.5	2100	4050	6500

Mr. Bean is building his own swimming pool by digging up his back yard. For the first three days, he uses a shovel. After the 3^{rd} day, he uses a backhoe. The amount of dirt that has been removed, in cubic feet, is modeled by the function d defined above, where g is a differentiable function and t is measured in days. Values of g(t) at selected values of t are given in the table above.

- (a) According to the model d, what is the average rate of change of the amount of dirt removed over the time interval $3 \le t \le 16$ days?
- (b) Use the data in the table to approximate d'(10), the instantaneous rate of change in the amount of dirt removed, in cubic feet per day, at time t = 10 days. Show the computations that lead to your answer.
- (c) Is *d* continuous for $0 \le t \le 16$? Justify your answer.
- (d) Find d'(2). Use appropriate units.