Derivative Rules

Constant: $\frac{d}{d x} c=$
Constant Multiple: $\frac{d}{d x} c u=$
Sum/Difference: $\frac{d}{d x}(u \pm v)=$
Find the derivative of each function.

1. $y=2 x^{2}-\frac{5}{x}+6$

Horizontal Tangent Lines

When does a function have a horizontal tangent line?
The slope of a horizontal tangent line is zero. To find where a function has a horizontal tangent line, we set the derivative equal to zero.
3. Find the x-values of any horizontal tangent lines of

$$
f(x)=4 x^{2}+7 x-13
$$

Normal Lines

A normal line goes through the same point the tangent line does, but it is perpendicular to the tangent line.
4. Find an equation of the NORMAL line of $f(x)=x^{3}-4 x^{2}+x+3$ at $x=3$.

Differentiability with piecewise functions

5. Is the function $f(x)=\left\{\begin{array}{ll}5 x^{2}+3 x+2, & x<-1 \\ -7 x-3, & x \geq-1\end{array}\right.$ differentiable at $x=-1$?
6. What values of a and b would make the function $f(x)= \begin{cases}x^{2}-a x+2, & x<3 \\ x+b, & x \geq 3\end{cases}$ differentiable at $x=3$?

2.6 Constant, Constant Multiple, Sum/Difference Rules

Calculus

Practice

Find the derivative of each function.

1. $f(x)=2 x^{3}-4 x+5$	2. $g(x)=5 x^{-2}-\frac{1}{2} x^{4}$	3. $y=2 e^{4}-3 x$	4. $y=\pi x^{2}-\pi$
5. $y=3 x^{2}-\frac{1}{6 x^{2}}$	6. $h(x)=\frac{x^{6}}{3}+6 x^{2 / 3}-4 x^{1 / 2}+2$ 7. $f(x)=\frac{1}{\sqrt{x}}+\frac{3}{5 x}$		
8. $f(x)=\sqrt{x}+3 \sqrt[3]{x}+2$	9. $f(x)=3 x$	$4 x^{3}+5 x+7$	10. $y=4 \sqrt{x}+e$

Find the \boldsymbol{x}-value(s) where the function has a horizontal tangent.

11. $f(x)=\frac{x^{3}}{3}+4 x^{2}+12 x-13$
12. $f(x)=\frac{x^{4}}{2}+x^{3}+\frac{x^{2}}{2}+7$
13. $f(x)=\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+\frac{21}{2} x^{2}+\frac{6}{5}$

Find the equations of the tangent AND normal lines of each function at the given value of \boldsymbol{x}.

14. $f(x)=3 \sqrt{x}+4$ at $x=4$

Tangent: \qquad
Normal: \qquad
15. $y=\frac{x^{2}}{2}+\frac{3}{2} x-2$ at $x=8$
16. $f(x)=-x^{3}+2 x^{2}-2$ at $x=2$

Are the functions differentiable at the given value of x ?

17. At $x=5$.
$f(x)= \begin{cases}2 x-\frac{8}{5} x^{2}+10, & x \leq 5 \\ 50-14 x, & x>5\end{cases}$
18. At $x=9$.
$f(x)= \begin{cases}\frac{30}{\sqrt{x}}-x^{2}, & x<9 \\ x^{2}-5 x-107, & x \geq 9\end{cases}$
19. At $x=3$.
$f(x)= \begin{cases}5 x^{2}-2 x+1, & x \leq 3 \\ 3 x^{2}+2 x+6, & x>3\end{cases}$

What values of \boldsymbol{a} and \boldsymbol{b} would make the function differentiable at the given value of \boldsymbol{x} ?

20. At $x=-1$
$f(x)= \begin{cases}a \sqrt[3]{x}+x^{2}-2, & x<-1 \\ b x+1, & x \geq-1\end{cases}$
21. At $x=2$.
$f(x)= \begin{cases}a x^{4}+x+4, & x<2 \\ b x-5, & x \geq 2\end{cases}$
22. At $x=1$.
$f(x)= \begin{cases}\frac{a}{x^{2}}+x^{3}-2, & x \leq 1 \\ x^{2}+b x+1, & x>1\end{cases}$

2.6 Constant, Constant Multiple, Sum/Difference Rules

Test Prep

23. Given $g(x)=2 x^{5}+\frac{b}{x^{2}}$ where b is a constant, find the value of b if $g^{\prime}(2)=180$.
(A) 10
(B) 20
(C) $\quad-40$
(D) 80
(E) none of these
24. Calculator required. Which of the following is an equation of the line tangent to the graph of $f(x)=x^{6}-x^{4}$ at the point where $f^{\prime}(x)=-1$?
(A) $y=-x-1.031$
(B) $y=-x-0.836$
(C) $y=-x+0.836$
(D) $y=-x+0.934$
(E) $y=-x+1.031$
25. $\lim _{h \rightarrow 0} \frac{3(x+h)^{2}+\frac{2}{x+h}-3 x^{2}-\frac{2}{x}}{h}$ is
(A) $x^{3}+\frac{2}{x}$
(B) $3 x^{2}+\frac{2}{x}$
(C) $6 x-\frac{2}{x^{2}}$
(D) $6 x+\frac{2}{x^{2}}$
(E) nonexistent
26. The functions f and g are given by $f(x)=\frac{x^{2}}{4}$ and $g(x)=-\frac{1}{2} x+2$.

There is a point P on the graph of f for $x \geq 0$ at which the line tangent to the graph of f is perpendicular to the graph of g. Find the coordinates of point P.

27.

$$
d(t)=\left\{\begin{array}{lc}
20 t+t^{2}-\frac{t^{3}}{6}, & 0 \leq t<3 \\
g(t), & 3 \leq t \leq 16
\end{array}\right.
$$

t (days)	3	8	12	16
$g(t)$ (cubic feet)	64.5	2100	4050	6500

Mr. Bean is building his own swimming pool by digging up his back yard. For the first three days, he uses a shovel. After the $3^{\text {rd }}$ day, he uses a backhoe. The amount of dirt that has been removed, in cubic feet, is modeled by the function d defined above, where g is a differentiable function and t is measured in days. Values of $g(t)$ at selected values of t are given in the table above.
(a) According to the model d, what is the average rate of change of the amount of dirt removed over the time interval $3 \leq t \leq 16$ days?
(b) Use the data in the table to approximate $d^{\prime}(10)$, the instantaneous rate of change in the amount of dirt removed, in cubic feet per day, at time $t=10$ days. Show the computations that lead to your answer.
(c) Is d continuous for $0 \leq t \leq 16$? Justify your answer.
(d) Find $d^{\prime}(2)$. Use appropriate units.

