Quotient Rule

$$
\begin{aligned}
& \quad h(x)=\frac{f}{g} \\
& h^{\prime}(x)=
\end{aligned}
$$

Find the derivative of each function.

1. $y=\frac{2 x^{2}}{3 x+1}$
2. $g(x)=\frac{3 e^{x}}{2 x}$
3. $h(x)=\frac{\sin x}{2 x^{2}-5}$
4. $h(x)=\frac{3 x+1}{2 x^{2}}$

The table below shows values of two differentiable functions f and g, as well as their derivatives.

	x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
	2	4	-2	-1	2

5. $h(x)=\frac{f(x)}{3 g(x)}$

Find $h^{\prime}(2)$.
6. $\quad r(x)=-\frac{g(x)}{1-f(x)}$

Find $r^{\prime}(2)$.

2.9 The Quotient Rule

Calculus

Find the derivative of each function.

1. $h(x)=\frac{4 x-1}{3 x+2}$	2. $g(x)=\frac{\sin x}{x}$	3. $h(x)=\frac{x^{3}+2 x^{2}-x}{2 x}$
4. $h(x)=\frac{4 x}{\ln x}$	5. $f(x)=\frac{3 x^{4}-2 x^{2}-3 \sqrt{x}}{x}$	6. $g(x)=\frac{2 x^{5}}{\cos x}$
Use the table to find the value of the derivatives of each function.		
7. $f(x)=\frac{e^{x}}{4 \sin x}$		

10.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
7	-5	3	2	-3

a. $h(t)=\frac{5 f(x)}{g(x)}$

Find $h^{\prime}(7)$.
b. $m(x)=\frac{g(x)+2}{3 f(x)}$

Find $m^{\prime}(7)$.
11.

t	$a(t)$	$a^{\prime}(t)$	$b(t)$	$b^{\prime}(t)$
-4	2	-3	-4	1

a. $\quad f(t)=-\frac{b(t)}{3 a(t)}$

Find $f^{\prime}(-4)$.
b. $g(t)=\frac{1-a(t)}{2 b(t)+3}$ Find $g^{\prime}(-4)$.
12.

x	$d(x)$	$d^{\prime}(x)$	$h(x)$	$h^{\prime}(x)$
1	-4	-2	4	3

a. $g(x)=\frac{d(x)}{2 h(x)}$

Find $g^{\prime}(1)$.
b. $f(x)=\frac{2-\frac{d(x)}{2}}{6-h(x)}$

Find $f^{\prime}(1)$.

Find the equation of the tangent line at the given \boldsymbol{x}-value.
13. $f(x)=\frac{\sin x}{\cos x}$ at $x=\frac{\pi}{3}$
14. $g(x)=-\frac{2 x}{e^{x}}$ at $x=0$
15. What is the instantaneous rate of change at $x=4$ of the function $f(x)=\frac{x^{2}-1}{x-2}$?
(A) $-\frac{15}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) $\frac{15}{2}$
16. Let f and g be differentiable functions with the following properties:
I. $f(x)<0$ for all x
II. $g(5)=2$

If $h(x)=\frac{f(x)}{g(x)}$ and $h^{\prime}(x)=\frac{f^{\prime}(x)}{g(x)}$, then $g(x)=$
(A) $\frac{1}{f^{\prime}(x)}$
(B) $f(x)$
(C) $-f(x)$
(D) 0
(E) 2
17. The function f is defined by $f(x)=\frac{x}{x+4}$. What points (x, y) on the graph of f have the property that the line tangent to f at (x, y) has a slope of $\frac{1}{9}$?
(A) $\left(2, \frac{1}{3}\right)$ only
(B) $\left(\frac{1}{9}, \frac{1}{13}\right)$ only
(C) $\left(2, \frac{1}{3}\right)$ and $\left(-10, \frac{5}{3}\right)$
(D) $\left(2, \frac{1}{3}\right)$ and $(-2,-1)$
(E) There are no such points.
18. The graph of a function f is shown to the right. Let $g(x)=\frac{x^{2}-1}{f(x)}$. What is the value of $g^{\prime}(4)$?

Graph of \boldsymbol{f}

