3.4 Differentiating Inverse Trig Functions

Find the derivative of each expression.

1. $\frac{d}{d x} \sin ^{-1}(8 x)$
2. $\frac{d}{d x} \sec ^{-1}\left(x^{2}\right)$
3. $\frac{d}{d x} \cot ^{-1}(2 x)$
4. $\frac{d}{d x} \sin ^{-1}\left(-x^{2}\right)$
5. $\frac{d}{d x} \tan ^{-1}\left(6 x^{3}\right)$

Find the tangent line equation of the curve at the given point.
6. $y=\arcsin (7 x)$ at the point where $x=\frac{\sqrt{2}}{14}$
7. $y=\arccos (3 x)$ at the point where $x=-\frac{1}{6}$
8. $y=\arctan (5 x)$ at the point where $x=-\frac{1}{5}$

$\left(\frac{s}{\tau}+x\right) \frac{z}{s}=\frac{t}{u}+K \cdot 8$	8	$\left(\frac{9}{\tau}+x\right) \frac{\varepsilon \wedge}{9}-=\frac{\varepsilon}{\nu z}-K \cdot L$	$\left(\frac{\downarrow \tau}{\underline{z}}-\chi\right) \underline{z} \Lambda L=\frac{\downarrow}{u}-\Lambda \cdot 9$	
$\frac{\tau+{ }_{9} x 9 \varepsilon}{z^{x 81}} \cdot \varsigma$	$\frac{\nu^{x-\tau}}{x z}-\geqslant$	$\frac{\tau+z^{x} \uparrow}{\tau}-\mathcal{\varepsilon}$	$\frac{\tau-\gamma^{x} \int^{x}}{\tau} \tau$	$\frac{z^{x \ngtr 9-I}}{=} \cdot \mathrm{I}$

