3.4 Differentiating Inverse Trig Functions

Calculus Name

Find the derivative of each expression.

 $1. \ \frac{d}{dx}\sin^{-1}(8x)$

 $2. \ \frac{d}{dx} \sec^{-1}(x^2)$

 $3. \ \frac{d}{dx} \cot^{-1}(2x)$

4. $\frac{d}{dx}\sin^{-1}(-x^2)$

5. $\frac{d}{dx} \tan^{-1}(6x^3)$

Find the tangent line equation of the curve at the given point.

- 6. $y = \arcsin(7x)$ at the point where $x = \frac{\sqrt{2}}{14}$
- 7. $y = \arccos(3x)$ at the point where $x = -\frac{1}{6}$

8. $y = \arctan(5x)$ at the point where $x = -\frac{1}{5}$

$\left(\frac{1}{2} + x\right)$	$8. y + \frac{\pi}{4} = \frac{5}{2} \left(\frac{3}{2} \right)$	$\left(\frac{9}{1} + \chi\right) \frac{\xi^{\Lambda}}{9} - = \frac{\varepsilon}{2}$	$-\chi$ Γ $\left(\frac{\overline{c}}{\lambda}\right)$	$6. y - \frac{\pi}{2} \sqrt{V} = \frac{\pi}{4} - y .0$
$\frac{x_{81}}{1+6x_{8}}$.C	$\frac{x\zeta}{t}$ 4	$\frac{2}{1+xx^{4}}$ 8	$\frac{z}{1-4x\sqrt{x}}$.2	8 .I √x+6-1√y .I