For each problem, a differentiable function is given along with a definition of the variables. Interpret the values in the context of the problem.

1. A file is downloaded to a computer at a rate modeled by $f(t)$, where t is the time in seconds since the start of the download and $f(t)$ is measured in megabits per second. Interpret $f^{\prime}(13)=25$.
2. The rate of change of a short-distance track runner is modeled by $r(t)$, where r is measured in feet per second and t is seconds. Interpret $r^{\prime}(0.5)=2$.
3. The rate of water leaking from a tank, in gallons per hour, is modeled by $R(t)$, where t is measured in hours. Interpret $R^{\prime}(1)=23$.
4. The number of bees in a beehive at time t days is modeled by the function $b(t)$. Interpret $b^{\prime}(30)=15$.
5. The rate of consumption of gasoline of Mr. Kelly's station wagon can be modeled by $f(t)$, where f is measured in gallons per hour and t is hours. Interpret $f^{\prime}(1)=1.2$.
6. The number of mistakes Mr. Brust makes in his math packets is modeled by $m(p)$ where p is the number of packets he has completed so far this year. Interpret $m^{\prime}(10)=13$.
7. The height of someone riding on a Ferris wheel t minutes after the ride begins is modeled by $h(t)$ where h is measured in feet. Interpret $h^{\prime}(3)=45$.
8. The time it takes for a sample of water to evaporate can be modeled by $t(S)$, where t is time, in minutes, and S is the size of the sample, measured in milliliters. Interpret $t^{\prime}(208)=0.9$.

