1. The position, in meters, of a body at time $t \geq 0$ measured in seconds is $s(t)=t^{3}-6 t^{2}-36 t$.

Find the body's acceleration each time the velocity is zero.
2. The data in the table gives selected values for the velocity, in meters per minute, of a particle moving along the x-axis. The velocity v is a differentiable function of time t.

time, \boldsymbol{t}	0	2	6	9	12
velocity, $\boldsymbol{v}(\boldsymbol{t})$	-4	2	5	-3	-6

a. At $t=0$, is the particle moving to the right or left? Justify.
b. Is there a time during the time interval $0 \leq t \leq$ 12 minutes when the particle is at rest? Justify.
c. Use the data from the table to approximate $v^{\prime}(4)$. Use appropriate labels.
3. A particle P moves on the number line. The graph $s=f(t)$ shows the position of P as a function of time t. The graph is a piecewise function that is quadratic from $0 \leq t \leq 3$, and then linear from $3 \leq$ $t \leq 9$.
a. When is P moving to the left?
b. When is P moving to the right?
c. When is P standing still?

4. The figure shows the velocity $v=\frac{d s}{d t}=f(t)$ of a body moving along a coordinate line in meters per second.
a. When does the body reverse direction?
b. When is the body moving at a constant speed?
c. What is the body's maximum speed?

d. At what time interval(s) is the body slowing down?

Answers to 4.2 CA \#2

| 1. 24 meters per second ${ }^{2}$ | 2a. Left because velocity is
 negative | 2b. Yes, between $(0,2)$ and
 $(6,9)$ sign changes so it
 must cross zero. | 2c. $\frac{5-2}{6-2}=\frac{3}{4}$ meters per
 minute 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3a. $(2,4)$ and $(8,9)$ | 3 b. $(0,2)$ and $(6,8)$ | 3c. $t=2$ and $(4,6)$ | |

