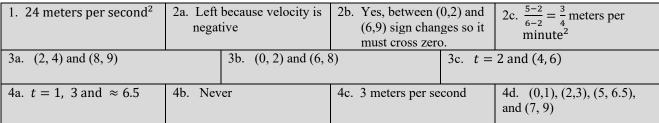
4.2 Position, Velocity, and Acceleration

Calculus

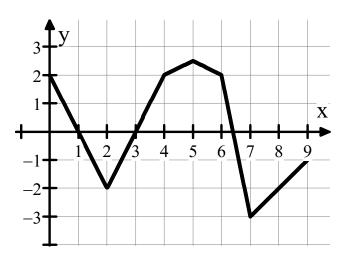
Name:

1. The position, in meters, of a body at time $t \ge 0$ measured in seconds is $s(t) = t^3 - 6t^2 - 36t$. Find the body's acceleration each time the velocity is zero.

2. The data in the table gives selected values for the velocity, in meters per minute, of a particle moving along the *x*-axis. The velocity v is a differentiable function of time *t*.


	time, <i>t</i>	0 2		2	6	9	12	
	velocity, $v(t)$	-4	-4 2		5	-3	-6	
a. At $t = 0$, is the particle moving to the right				b. Is there a time during the time interval $0 \le t \le t$				
or left? Justify.				12 minutes when the particle is at rest?				
					Justify.			

c. Use the data from the table to approximate v'(4). Use appropriate labels.


- 3. A particle *P* moves on the number line. The graph s = f(t) shows the position of *P* as a function of time *t*. The graph is a piecewise function that is quadratic from $0 \le t \le 3$, and then linear from $3 \le t \le 9$.
 - a. When is *P* moving to the left?
 - b. When is *P* moving to the right?
 - c. When is *P* standing still?

- 4. The figure shows the velocity $v = \frac{ds}{dt} = f(t)$ of a body moving along a coordinate line in meters per second.
 - a. When does the body reverse direction?
 - b. When is the body moving at a constant speed?
 - c. What is the body's maximum speed?
 - d. At what time interval(s) is the body slowing down?

Answers to 4.2 CA #2

