4.3 Rates of Change Other Than Motion

Calculus

Name:

1. The tide removes sand from a beach at a rate modeled by the function *R*, given by

$$R(t) = 1 + 6\sin\left(\frac{2\pi x}{25}\right)$$

A pumping station adds sand to the beach at a rate modeled by the function S, given by $S(t) = \frac{18t}{1+4t}$. Both R(t) and S(t) have units of cubic yards per hour and t is measured in hours for $0 \le t \le 10$. Find the rate at which the total amount of sand on the beach is changing at time t = 6.

2. Tourists visiting an island resort contracted a mystery illness over a 45-day period. The health authorities recorded the rate of new cases per day and some of the rates are listed in the table below.

t Day	<i>N</i> (<i>t</i>) New cases per day		
2	3		
6	8		
10	15		
15	30		
25	100		
35	50		
40	22		
45	10		

- a. Use the table to estimate N'(20). Show the computations that lead to your answer. Indicate units of measure.
- b. After studying the spread of the disease, the health department authorities decided they could model the number of new cases per with the model $R(t) = \frac{80000e^{-0.2t}}{(1+200e^{-0.2t})^2}$ for $0 \le t \le 50$ days. The disease is considered eradicated when the number of new cases per day does not exceed 5. Use R(t) to find on what day this will occur.
- c. Find R'(20). Using appropriate units, explain the meaning of your answer in terms of the decay rate of the substance.
- 3. The number of gallons, P(t), of a pollutant in a lake changes at the rate $P'(t) = 2 4e^{-0.3\sqrt{t}}$ gallons per day, where t is measured in days. There are 100 gallons of pollutant in the lake at time t = 0. Is the amount of pollutant increasing at time t = 7? Why or why not?

t	R(t)		
(minutes)	(gallons per minute)		
0	15		
20	25		
30	45		
50	60		
60	70		
90	75		

Use the data from the table to find an approximation for R'(40). Show the computations that lead to your answer. Indicate units of measure.

5. A store is having a 10-hour sale. The total number of shoppers who have entered the store t hours after the sale begins is modeled by the function E defined by $E(t) = 0.2t^4 - 10t^3 + 50t^2$ for $0 \le t \le 10$. At what rate are shoppers entering the store 4 hours after the start of the sale?

1. $S(6) - R(6) = -2.668 \text{ yd}^3$ per hour		2a. $\frac{N(25) - N(15)}{25 - 15} = 7$ new cases per day per day	
2b: $R(t) = 5$ when $t \approx 48.274$. According to the model, the disease will be eradicated on the 49^{th} day.	 2c: On the 20th day, the rate of new cases per day is increasing by 7.6966 cases per day per day. 		3. $P'(7) \approx 0.191 > 0$ so the amount of pollutant is increasing at this time.
4. $\frac{R(50)-R(30)}{50-30} = 0.75$ gallons per min ²		5. $E'(4) = -28.8$ shoppers per hour	

Answers to 4.3 CA #1