1. The tide removes sand from a beach at a rate modeled by the function R, given by

$$
R(t)=1+6 \sin \left(\frac{2 \pi x}{25}\right)
$$

A pumping station adds sand to the beach at a rate modeled by the function S, given by $S(t)=\frac{18 t}{1+4 t}$. Both $R(t)$ and $S(t)$ have units of cubic yards per hour and t is measured in hours for $0 \leq t \leq 10$. Find the rate at which the total amount of sand on the beach is changing at time $t=6$.
2. Tourists visiting an island resort contracted a mystery illness over a 45 -day period. The health authorities recorded the rate of new cases per day and some of the rates are listed in the table below.

| t |
| :---: | :---: |
Day	\quad	$N(t)$		
New cases per day	$	$	2	8
:---:	:---:			
6	15			
10	30			
15	100			
25	50			
35	22			
40	10			
45				

a. Use the table to estimate $N^{\prime}(20)$. Show the computations that lead to your answer. Indicate units of measure.
b. After studying the spread of the disease, the health department authorities decided they could model the number of new cases per with the model $R(t)=\frac{80000 e^{-0.2 t}}{\left(1+200 e^{-0.2 t}\right)^{2}}$ for $0 \leq t \leq 50$ days. The disease is considered eradicated when the number of new cases per day does not exceed 5 . Use $R(t)$ to find on what day this will occur.
c. Find $R^{\prime}(20)$. Using appropriate units, explain the meaning of your answer in terms of the decay rate of the substance.
3. The number of gallons, $P(t)$, of a pollutant in a lake changes at the rate $P^{\prime}(t)=2-4 e^{-0.3 \sqrt{t}}$ gallons per day, where t is measured in days. There are 100 gallons of pollutant in the lake at time $t=0$. Is the amount of pollutant increasing at time $t=7$? Why or why not?
4.

t (minutes)	$R(t)$ (gallons per minute)
0	15
20	25
30	45
50	60
60	70
90	75

Use the data from the table to find an approximation for $R^{\prime}(40)$. Show the computations that lead to your answer. Indicate units of measure.
5. A store is having a 10 -hour sale. The total number of shoppers who have entered the store t hours after the sale begins is modeled by the function E defined by $E(t)=0.2 t^{4}-10 t^{3}+50 t^{2}$ for $0 \leq t \leq 10$. At what rate are shoppers entering the store 4 hours after the start of the sale?

Answers to 4.3 CA \#1

