1. The function $D(t)=20-5.8 \cos \left(\frac{\pi}{6} t\right)$ models the depth, in feet, of water t hours after 10 A.M. Find the instantaneous rate of change of the depth of the water at 1 P.M. Use appropriate units.
2.

t (minutes)	0	10	20	30
$W(t)$ $\left({ }^{\circ} \mathrm{F}\right)$	100	89	81	75

The temperature of water in a bathtub at time t is modeled by a strictly decreasing, twice-differentiable function W, where $W(t)$ is measured in degrees Fahrenheit and t is measured in minutes. The water is cooling for 30 minutes, beginning at time $t=0$. Values of $W(t)$ at selected times t are given in the table above. Use the data in the table to estimate $W^{\prime}(20)$. Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.
3. For time $t \geq 0$, let $r(t)=70\left(1-e^{-.04 t^{2}}\right)$ represent the speed, in miles per hour, at which a car travels along a straight road. Find $r^{\prime}(2)$. Indicate units of measure.
4. The wind chill is the temperature, in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$), a human feels based on the air temperature, in degrees Fahrenheit, and the wind velocity, v, in miles per hour. If the air temperature is $32^{\circ} \mathrm{F}$, then the wind chill is given by $w(v)=55.628-22.07 v^{0.16}$. Find $w^{\prime}(30)$. Using correct units explain the meaning of $w^{\prime}(30)$ in terms of wind chill.
5.

A certain high school's lunch line has 100 people in line when the cafeteria opens. The cafeteria is able to serve 100 people per minute. The graph above shows the rate, $r(t)$, at which students get in line during the 30 -minute lunch time. Time t is measured in minutes from the time lunch begins. Is the number of people waiting in line to get lunch increasing or decreasing between $t=5$ and $t=10$? Justify your answer.

Answers to 4.3 CA \#2

1. $D^{\prime}(3)=3.0368$ feet per hr
2. Three possible answers:

$$
\begin{aligned}
& \frac{W(30)-W(10)}{30-10}=-0.7^{\circ} \mathrm{F} \text { per minute } \\
& \frac{W(20)-W(10)}{20-10}=-0.8^{\circ} \mathrm{F} \text { per minute } \\
& \frac{W(30)-W(20)}{30-20}=-0.6^{\circ} \mathrm{F} \text { per minute }
\end{aligned}
$$

3. $r^{\prime}(2) \approx 9.544$ miles per hr^{2}
4. If the wind is traveling at 30 mph , then the wind chill is getting colder at a rate of $-0.2028^{\circ} \mathrm{F}$ per mile per hour.
5. Increasing because at $t=5$ the rate of students getting in line is 120 people / min and only 100 per \min are being served. Between $t=5$ and $t=10$, the rate increases even more.
