1. Let f be a function with f(2) = -2 such that for all points (x, y) on the graph of f the slope is given by $\frac{x^2-1}{2y}$. Write an equation for the line tangent to the graph of f at x=2 and use it to approximate f(2.2).

Answer the questions for each function listed.

- 2. $f(x) = x^2 5x$ is concave up at x = 3.
 - a. What is the estimate for f(3.2) using the local linear approximation for f at x = 3?
- 3. $f(x) = x \cos x$ is concave down at $x = \frac{\pi}{2}$ a. What is the estimate for f(1.5) using the
 - a. What is the estimate for f(1.5) using the local linear approximation for f at $x = \frac{\pi}{2}$? Round your answer to three decimal places.

- b. Is it an underestimate or overestimate? Explain.
- b. Is it an underestimate or overestimate? Explain.
- 4. f is concave up and f(-3) = 2 and f'(-3) = 4.
 - a. What is the estimate for f(-2.9) using the local linear approximation for f at x = -3?
- 5. f is concave down and f(2) = -6 and f'(2) = 2. a. What is the estimate for f(1.8) using the local linear approximation for f at x = 2?

- b. Is it an underestimate or overestimate? Explain.
- b. Is it an underestimate or overestimate? Explain.

	concave down.	сопсаме пр.	concave down.	сопсаме пр.	
	pecause ∫ is	because ∫ is	pecause ∫ is	pecause ∫ is	21.2− ≈ v
	5b. Overestimate	4b. Underestimate	3b. Overestimate	2b. Underestimate	$(z - x) \frac{s}{4} - = z + y .1$
	4.6− ≈ (8.1)} sa.	4a. ∫(-2.9) ≈ 2.4	111.0 ≈ (2.1)} .s£	2a. ƒ(3.2) ≈ −5.8	