1. Let f be a function with $f(2)=-2$ such that for all points (x, y) on the graph of f the slope is given by $\frac{x^{2}-1}{2 y}$. Write an equation for the line tangent to the graph of f at $x=2$ and use it to approximate $f(2.2)$.

Answer the questions for each function listed.

2. $f(x)=x^{2}-5 x$ is concave up at $x=3$.
a. What is the estimate for $f(3.2)$ using the local linear approximation for f at $x=3$?
b. Is it an underestimate or overestimate?

Explain.
3. $f(x)=x \cos x$ is concave down at $x=\frac{\pi}{2}$
a. What is the estimate for $f(1.5)$ using the local linear approximation for f at $x=\frac{\pi}{2}$? Round your answer to three decimal places.
b. Is it an underestimate or overestimate? Explain.
4. f is concave up and $f(-3)=2$ and $f^{\prime}(-3)=4$. .
a. What is the estimate for $f(-2.9)$ using the local linear approximation for f at $x=-3$?
5. f is concave down and $f(2)=-6$ and $f^{\prime}(2)=2$.
a. What is the estimate for $f(1.8)$ using the local linear approximation for f at $x=2$?
b. Is it an underestimate or overestimate?

Explain.
b. Is it an underestimate or overestimate?

Explain.

тмор әлелиол s! f วsneวəq $\nabla^{\circ} 9-\approx(8 \cdot \tau) f \cdot \mathrm{eg}$	-dn әлeวuos s! f วsпеววq $\hbar \cdot z \approx(6 \cdot z-) f \cdot{ }^{\circ}$	廿мор әлезиол s! f วsneวəq $\text { III'0 } \approx\left(\mathrm{g}^{\prime}\right) f \cdot \mathrm{e} \mathcal{E}$		$\begin{gathered} \mathrm{SI} \cdot \mathrm{Z}-\approx \kappa \\ (Z-x) \frac{\sigma^{2}}{\varepsilon}-=\tau+\kappa \cdot \mathrm{I} \end{gathered}$

