1. Let $f$ be a function with $f(3)=-5$ such that for all points $(x, y)$ on the graph of $f$ the slope is given by $\frac{2 x^{2}}{y}$. Write an equation for the line tangent to the graph of $f$ at $x=3$ and use it to approximate $f(2.9)$.

## Answer the questions for each function listed.

2. $f(x)=\cos (3 x)$ is concave up at $x=\frac{2 \pi}{3}$.
a. What is the estimate for $f(2)$ using the local linear approximation for $f$ at $x=\frac{2 \pi}{3}$ ?
b. Is it an underestimate or overestimate? Explain.
3. $f$ is concave up and $f(-1)=2$ and $f^{\prime}(-1)=-2$.
a. What is the estimate for $f(-0.9)$ using the local linear approximation for $f$ at $x=-1$ ?
b. Is it an underestimate or overestimate?

Explain.
3. $f(x)=\frac{x^{2}-3}{e^{x}+1}$ is concave up at $x=0$.
a. What is the estimate for $f(0.3)$ using the local linear approximation for $f$ at $x=0$ ?
b. Is it an underestimate or overestimate? Explain.
5. $f$ is concave down and $f(4)=-3$ and $f^{\prime}(4)=1$.
a. What is the estimate for $f(4.2)$ using the local linear approximation for $f$ at $x=4$ ?
b. Is it an underestimate or overestimate? Explain.

|  <br> s! $f$ วsneวəq <br>  $8^{\prime} Z-\approx\left(Z^{\prime} t\right) f \cdot \mathrm{v}$ |  |  |  | $\begin{array}{r} \forall 9^{\prime} \forall-\approx \kappa \\ (\varepsilon-x) \frac{s}{8 I}-=s+\kappa \cdot I \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |

