The tangent line of the function $f(x)$ at $x=a$ can give you an approximate value of $f(x)$ for points close to $x=a$.

Concave UP with a Tangent Line

Concave DOWN with a Tangent Line

b. Is it an underestimate or overestimate? Explain.
2. The function $f(x)=5 x-2 x^{3}-2$ is concave down at $x=1$?.
a. Find the tangent line of f at $x=1$.
b. What is the estimate for $f(1.1)$ using the local linear approximation for f at $x=1$?
c. Is it an underestimate or overestimate? Explain.
3. Consider the differential equation $\frac{d y}{d x}=e^{y}\left(2 x^{2}-5 x\right)$. Let $y=f(x)$ be the particular solution to the differential equation with the initial condition $f(2)=0$.
a. Write an equation for the line tangent to the graph of f at the point $(2,0)$.
b. Use the tangent line to approximate $f(2.2)$.

For each differential equation, let $y=f(x)$ be the particular solution to the differential equation with the given initial condition.

1. $\frac{d y}{d x}=(5-y) \sin x$ and $f\left(\frac{\pi}{2}\right)=2$.
a. Write an equation for the line tangent to the graph of f at the point $\left(\frac{\pi}{2}, 2\right)$.
b. Use the tangent line to approximate $f(1.5)$.

Answer the questions for each function listed.

3. $f(x)=2 \cos x+1$ is concave down on $\left[0, \frac{\pi}{2}\right]$.
a. What is the estimate for $f(1)$ using the local linear approximation for f at $x=\frac{\pi}{2}$? Give an exact answer (no rounding).
4. $\frac{d y}{d x}=-\frac{4 x}{y}$ and $f(1)=3$.
a. Write an equation for the line tangent to the graph of f at the point $(1,3)$.
b. Use the tangent line to approximate $f(1.1)$.
5. $f(x)=\frac{e^{2 x}}{x+1}$ is concave up on $x>-1$.
a. What is the estimate for $f(0.1)$ using the local linear approximation for f at $x=0$?
b. Is it an underestimate or overestimate?

Explain.
5. $f(x)=-\sqrt{4-x}$ is concave up on its domain.
a. What is the estimate for $f(1.9)$ using the local linear approximation for f at $x=2$? Round to three decimal places.
6. f is concave down and $f(3)=-1$ and $f^{\prime}(3)=2$.
a. What is the estimate for $f(3.2)$ using the local linear approximation for f at $x=3$?
b. Is it an underestimate or overestimate? Explain.
b. Is it an underestimate or overestimate? Explain.
7. f is concave up and $f(-5)=2$ and $f^{\prime}(-5)=-1$.
a. What is the estimate for $f(-5.1)$ using the local linear approximation for f at $x=-5$?
b. Is it an underestimate or overestimate?

Explain.
8. f is concave down and $f(2)=1$ and $f^{\prime}(2)=-3$.
a. What is the estimate for $f(1.9)$ using the local linear approximation for f at $x=2$?
b. Is it an underestimate or overestimate?

Explain.

4.6 Approximating with Local Linearity

Test Prep

9. Let f be the function given by $f(x)=3 x^{2}-4 x+2$. The tangent line to the graph of f at $x=1$ is used to approximate values of $f(x)$. Which of the following is the smallest value of x for which the error resulting from this tangent line approximation is more than 0.5 ?
[Hint for your calculator use: Create a table to compare values of two functions.]
(A) 1.3
(B) 1.4
(C) 1.5
(D) 1.6
(E) 1.7
10. The depth of snow in a field is given by the twice-differentiable function S for $0 \leq t \leq 12$, where $S(t)$ is measured in centimeters and time t is measured in hours. Values of $S^{\prime}(t)$, the derivative of S, at selected values of time t are shown in the table above. It is known that the graph of S is concave down for $0 \leq t \leq 12$.

t (hours)	0	1	4	9	12
$S^{\prime}(t)$ $\left(\begin{array}{c}\text { centimeters per } \\ \text { hour) }\end{array}\right.$	1.8	2.4	2.0	1.6	1.3

a. Use the data in the table to approximate $S^{\prime \prime}(10)$. Show the computations that lead to your answer. Using correct units, explain the meaning of $S^{\prime \prime}(10)$ in the context of the problem.
b. Is there a time t, for $0 \leq t \leq 12$, at which the depth of snow is changing at a rate of 1.5 centimeters per hour? Justify your answer?
c. At time $t=4$, the depth of snow is 28 centimeters. Use the line tangent to the graph of S at $t=4$ to approximate the depth of the snow at time $t=6$. Is the approximation an underestimate or an overestimate of the actual depth of snow at time $t=6$? Justify your answer.

