For each differential equation, let $y=f(x)$ be the particular solution to the differential equation with the given initial condition.

1. $\frac{d y}{d x}=(5-y) \sin x$ and $f\left(\frac{\pi}{2}\right)=2$.
a. Write an equation for the line tangent to the graph of f at the point $\left(\frac{\pi}{2}, 2\right)$.

$$
\begin{gathered}
m=(5-2) \sin \left(\frac{\pi}{2}\right)=3 \\
y-2=3\left(x-\frac{\pi}{2}\right) \\
\text { or } \\
y=3 x-\frac{3 \pi}{2}+2
\end{gathered}
$$

b. Use the tangent line to approximate $f(1.5)$.

$$
1.7876
$$

2. $\frac{d y}{d x}=-\frac{4 x}{y}$ and $f(1)=3$.
a. Write an equation for the line tangent to the graph of f at the point $(1,3)$.

$$
\begin{aligned}
& m=-4 / 3 \\
& y-3=-4 / 3(x-1) \\
& y=-4 x+13 / 3
\end{aligned}
$$

b. Use the tangent line to approximate $f(1.1)$.

$$
2.8667
$$

Answer the questions for each function listed.
3. $f(x)=2 \cos x+1$ is concave down on $\left[0, \frac{\pi}{2}\right]$.
a. What is the estimate for $f(1)$ using the local linear approximation for f at $x=\frac{\pi}{2}$? Give an exact answer (no rounding).

$$
\begin{aligned}
& \text { exact answer (no rounding). } \\
& f(\pi / 2)=2 \cos (\pi / 2)+1=1 \\
& f^{\prime}(\pi / 2)=-2 \sin (\pi / 2)=-2 \leftarrow y_{1} \\
& y-1=-2(x-\pi / 2) \\
& y-1=-2(1-\pi / 2) \\
& y-1=-2+11
\end{aligned}
$$

b. Is it an underestimate or overestimate?

Explain.
Overestimate because $f(x)$ is concave down
4. $f(x)=\frac{e^{2 x}}{x+1}$ is concave up on $x>-1$.
a. What is the estimate for $f(0.1)$ using the local linear approximation for f at $x=0$?

$$
\begin{aligned}
& f(0)=\frac{e^{0}}{0+1}=\left.\right|_{1} \\
& f^{\prime}(x)=\frac{2 e^{2 x}(x+1)-e^{2 x}(1)}{(x+1)^{2}} \\
& f^{\prime}(0)=\frac{2 e^{0}(1)-e^{0}}{(1)^{2}}=\mid \quad m \\
& y=1=1(x-0) \\
& y=x+1
\end{aligned}
$$

b. Is it an underestimate or overestimate?

Explain.
Underestimate because $f(x)$ is concave up.
5. $f(x)=-\sqrt{4-x}$ is concave up on its domain.
a. What is the estimate for $f(1.9)$ using the local linear approximation for f at $x=2$? Round to three decimal places.

$$
\begin{aligned}
& f(2)=-\sqrt{2} \stackrel{1}{t} y_{1} \\
& f^{\prime}(x)=-\frac{1}{2 \sqrt{4-x}}(-1)=\frac{1}{2 \sqrt{4-x}} \\
& f^{\prime}(2)=\frac{1}{2 \sqrt{2}} m \\
& y+\sqrt{2}=\frac{1}{2 \sqrt{2}}(x-2) \\
& y=-1.4495
\end{aligned}
$$

b. Is it an underestimate or overestimate?

Explain.
underestimate. $f(x)$ is concave UP.
7. f is concave up and $f(-5)=2$ and $f^{\prime}(-5)=-1$.
a. What is the estimate for $f(-5.1)$ using the local linear approximation for f at $x=-5$?

$$
\begin{gathered}
y-2=-1(x+5) \\
y=-x-3 \\
y=5.1-3 \\
y=2.1
\end{gathered}
$$

b. Is it an underestimate or overestimate?

Explain.
underestimate. $f(x)$ is concave up.
6. f is concave down and $f(3)=-1$ and $f^{\prime}(3)=2$.
a. What is the estimate for $f(3.2)$ using the local linear approximation for f at $x=3$?

$$
\begin{gathered}
y+1=2(x-3) \\
y=2 x-7 \\
y=2(3.2)-7 \\
y=-0.6
\end{gathered}
$$

b. Is it an underestimate or overestimate?

Explain.
Overestimate. $f(x)$ is Concave down.
8. f is concave down and $f(2)=1$ and $f^{\prime}(2)=-3$.
a. What is the estimate for $f(1.9)$ using the local linear approximation for f at $x=2$?

$$
\begin{gathered}
y-1=-3(x-2) \\
y=-3 x+7 \\
y=-3(1.9)+7 \\
y=1.3
\end{gathered}
$$

b. Is it an underestimate or overestimate? Explain.
Overestimate. $f(x)$ is concave down.
4.6 Approximating with Local Linearity

9. Let f be the function given by $f(x)=3 x^{2}-4 x+2$. The tangent line to the graph of f at $x=1$ is used to approximate values of $f(x)$. Which of the following is the smallest value of x for which the error resulting from this tangent line approximation is more than 0.5 ?
[Hint for your calculator use: Create a table to compare values of two functions.]

$$
\begin{aligned}
& y-1=2(x-1) \\
& y=2 x-1
\end{aligned}
$$

(A) 1.3
(B) 1.4
(C) 1.5
(D) 1.6
(E) 1.7
10. The depth of snow in a field is given by the twice-differentiable function S for $0 \leq t \leq 12$, where $S(t)$ is measured in centimeters and time t is measured in hours. Values of $S^{\prime}(t)$, the derivative of S, at selected values of time t are shown in the table above. It is known that the graph of S is concave down for $0 \leq t \leq 12$.

t (hours)	0	1	4	9	12
$S^{\prime}(t)$ (centimeters per hour)	1.8	2.4	2.0	1.6	1.3

a. Use the data in the table to approximate $S^{\prime \prime}(10)$. Show the computations that lead to your answer. Using correct units, explain the meaning of $S^{\prime \prime}(10)$ in the context of the problem.

$$
s^{\prime \prime}(10) \approx \frac{s^{\prime}(12)-s^{\prime}(9)}{12-9}=\frac{-0.3}{3}=-0.1 \mathrm{~cm} / \mathrm{hr}^{2}
$$

The rate of the depth of snow is decreasing by 0.1 cm per hour per hour.
b. Is there a time t, for $0 \leq t \leq 12$, at which the depth of snow is changing at a rate of 1.5 centimeters per hour? Justify your answer?
Yes, on the interval $9 \leq t \leq 12$. By the Intermediate Value Theorem the rate must be 1.5 .
c. At time $t=4$, the depth of snow is 28 centimeters. Use the line tangent to the graph of S at $t=4$ to approximate the depth of the snow at time $t=6$. Is the approximation an underestimate or an overestimate of the actual depth of snow at time $t=6$? Justify your answer.

$$
\begin{aligned}
s-28 & =2(t-4) \\
s & =2 t+20 \\
s & =32 \mathrm{~cm}
\end{aligned}
$$

32 cm is an overestimate because $S(t)$ is concave down

