
 
 
Strategies for solving optimization problems: 

1. Draw a picture (if applicable) and identify known and unknown quantities. 
2. Write an equation (model) that will be optimized. 
3. Write your equation in terms of a single variable. 
4. Determine the desired max or min value with calculus techniques. 
5. Determine the domain (endpoints) of your equation to verify if the endpoints 

represent a max or min. 
 
 
1.   What point on the graph 𝑦 ൌ √𝑥 is closest to ሺ5,0ሻ. 
 
 
 
 
 
 
 
 
2.   Two towers are 30 feet apart.  One is 12 feet high and the other is 28 feet high.  There is a 

stake in the ground between the towers.  The top of each tower has a wire tied to it that 
connects to the stake on the ground.  Where should the stake be placed to use the least 
amount of wire? 

 
 
 
 
 
 
 
 
3.   A particle is traveling along the 𝑥-axis and its position from the origin can be modeled by 

𝑥ሺ𝑡ሻ ൌ 𝑡ଷ െ 15𝑡ଶ ൅ 72𝑡 െ 9 
where 𝑥 is centimeters and 𝑡 is seconds.  
a. On the interval 3 ൑ 𝑡 ൑ 9, find when the particle is farthest to the right.   

 
 
 
 

b. On the same interval, what is the particle’s maximum speed?   
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5.11 Solving Optimization Problems   
Calculus 

1.   A particle is traveling along the 𝑥-axis and it’s position from the origin can be modeled by 𝑥ሺ𝑡ሻ ൌ െ
ଶ

ଷ
𝑡ଷ ൅ 𝑡ଶ ൅

12𝑡 ൅ 1 where 𝑥 is meters and 𝑡 is minutes on the interval .   
a. At what time 𝑡 during the interval 0 ൑ 𝑡 ൑ 4 is the particle farthest to the left?   

 
 
 
 
 
 
 
 

b. On the same interval what is the particle’s maximum speed? 
 
 
 
 
 
 

2.  Find the point on the graph of the function 𝑓ሺ𝑥ሻ ൌ 𝑥ଶ that is closest to the point ቀ2,
ଵ

ଶ
ቁ. 

 
 
 
 
 
 
 
 

3.   A particle moves along the 𝑥-axis so that at any time 𝑡 its position is 𝑠ሺ𝑡ሻ ൌ
ଵ

ଷ
𝑡ଷ െ 4𝑡ଶ ൅ 7𝑡 െ 5 where 𝑠 is 

inches and 𝑡 is hours.   
a. At what time 𝑡 during the interval 0 ൑ 𝑡 ൑ 6 is the particle farthest to the right?   

 
 
 
 
 
 

b. On the same interval what is the particle’s maximum speed? 
 
 
 
 
 
4.   A rectangle is formed with the base on the 𝑥-axis and the top corners on the function 𝑦 ൌ 20 െ 𝑥ଶ.  Find the 

dimensions of the rectangle with the largest area.  
 
 
 
 
 
 
 
 
 

Practice 



5.   What is the radius of a cylindrical soda can with volume of 512 cubic inches that will use the minimum 
material? Volume of a cylinder is 𝑉 ൌ 𝜋𝑟ଶℎ.  Surface area of a cylinder is 𝐴 ൌ 2𝜋𝑟ଶ ൅ 2𝜋𝑟ℎ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.   A swimmer is 500 meters from the closest point on a straight shoreline.  She needs to reach her house located 

2000 meters down shore from the closest point.  If she swims at 
ଵ

ଶ
 m/s and she runs at 4 m/s, how far from her 

house should she come ashore so as to arrive at her house in the shortest time?    Hint: time ൌ
ୢ୧ୱ୲ୟ୬ୡୣ

୰ୟ୲ୣ
 

 
 
 
 
 
 
 
 
 
 
 
 
7.   Mr. Kelly is selling licorice for $1.50 per piece.  The cost of producing each piece of licorice increases the more 

he produces.  Mr. Kelly finds that the total cost to produce the licorice is 10√𝑥 dollars, where 𝑥 is the number 
of licorice pieces.  What is the most Mr. Kelly could lose per piece on the sale of licorice.  Justify your answer.  
(hint: profit is the difference between money received and the cost of the licorice.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
8.   Let 𝑓ሺ𝑥ሻ ൌ 𝑥𝑒ି௫ ൅ 𝑐𝑒ି௫, where 𝑐 is a positive constant.  For what positive value of 𝑐 does 𝑓 have an absolute 

maximum at 𝑥 ൌ െ5? 
 
 
 
 
 
 

Test Prep 5.11 Solving Optimization Problems 



9.   Let 𝑓ሺ𝑥ሻ ൌ 9 െ 𝑥ଶ for 𝑥 ൒ 0 and 𝑓ሺ𝑥ሻ ൒ 0.  An isosceles triangle whose base is the interval from the point 
ሺ0, 0ሻ to the point ሺ𝑏, 0ሻ has its vertex on the graph of 𝑓.  For what value of 𝑏 does the triangle have maximum 

area?  Recall that the area of a triangle is modeled by 𝐴 ൌ
ଵ

ଶ
ሺbaseሻሺheightሻ. 

 
 
 
 
 
 
 
10.   Mr. Sullivan is making apple juice from the apples he collected in his neighbor’s orchard.  The number of 

gallons of apple juice in a tank at time 𝑡 is given by the twice-differentiable function 𝐴, where 𝑡 is measured in 
days and 0 ൑ 𝑡 ൑ 20.  Values of 𝐴ሺ𝑡ሻ at selected times 𝑡 are given in the table below. 

 

𝑡 (days) 0 3 8 12 20 

𝐴ሺ𝑡ሻ (gallons) 2 6 9 10 7 
   

a. Use the data in the table to estimate the rate at which the number of gallons of apple juice in the tank is 
changing at time 𝑡 ൌ 10 days.  Show the computations that lead to your answer.  Indicate units of measure. 

 
 
 
 

b. For 0 ൑ 𝑡 ൑ 12, is there a time 𝑡 at which 𝐴ᇱሺ𝑡ሻ ൌ
ଶ

ଷ
?  Justify your answer. 

 
 
 
 

c. The number of gallons of apple juice in the tank at time 𝑡 is also modeled by the function 𝐵 defined by 

𝐵ሺ𝑡ሻ ൌ 3𝑡 െ
ଵ

ଶ
ሺ𝑡 ൅ 4ሻ

య
మ ൅ 6, where 𝑡 is measured in days and 0 ൑ 𝑡 ൑ 20.  Based on the model, at what 

time 𝑡, for 0 ൑ 𝑡 ൑ 20, is the number of gallons of apple juice in the tank an absolute maximum?  
 
 
 
 
 
 
 
 
 
 

d. For the function 𝐵 defined in part c, the locally linear approximation near 𝑡 ൌ 5 is used to approximate 
𝐵ሺ5ሻ.  Is this approximation an overestimate or an underestimate for the value of 𝐵ሺ5ሻ?  Give a reason for 
your answer. 

 
 
 
 
 
 


