

5.11 Solving Optimization Problems

Calculus

1. A particle is traveling along the x-axis and it's position from the origin can be modeled by $x(t) = -\frac{2}{3}t^3 + t^2 + 12t + 1$ where x is meters and t is minutes on the interval.

Practice

a. At what time t during the interval $0 \le t \le 4$ is the particle farthest to the left?

- b. On the same interval what is the particle's maximum speed?
- 2. Find the point on the graph of the function $f(x) = x^2$ that is closest to the point $\left(2, \frac{1}{2}\right)$.

- 3. A particle moves along the x-axis so that at any time t its position is $s(t) = \frac{1}{3}t^3 4t^2 + 7t 5$ where s is inches and t is hours.
 - a. At what time t during the interval $0 \le t \le 6$ is the particle farthest to the right?
 - b. On the same interval what is the particle's maximum speed?
- 4. A rectangle is formed with the base on the x-axis and the top corners on the function $y = 20 x^2$. Find the dimensions of the rectangle with the largest area.

5. What is the radius of a cylindrical soda can with volume of 512 cubic inches that will use the minimum material? Volume of a cylinder is $V = \pi r^2 h$. Surface area of a cylinder is $A = 2\pi r^2 + 2\pi r h$

6. A swimmer is 500 meters from the closest point on a straight shoreline. She needs to reach her house located 2000 meters down shore from the closest point. If she swims at $\frac{1}{2}$ m/s and she runs at 4 m/s, how far from her house should she come ashore so as to arrive at her house in the shortest time? *Hint*: time = $\frac{\text{distance}}{\text{rate}}$

7. Mr. Kelly is selling licorice for \$1.50 per piece. The cost of producing each piece of licorice increases the more he produces. Mr. Kelly finds that the total cost to produce the licorice is $10\sqrt{x}$ dollars, where x is the number of licorice pieces. What is the most Mr. Kelly could lose per piece on the sale of licorice. Justify your answer. (hint: profit is the difference between money received and the cost of the licorice.)

5.11 Solving Optimization Problems

Test Prep

8. Let $f(x) = xe^{-x} + ce^{-x}$, where c is a positive constant. For what positive value of c does f have an absolute maximum at x = -5?

9. Let $f(x) = 9 - x^2$ for $x \ge 0$ and $f(x) \ge 0$. An isosceles triangle whose base is the interval from the point (0, 0) to the point (b, 0) has its vertex on the graph of f. For what value of b does the triangle have maximum area? Recall that the area of a triangle is modeled by $A = \frac{1}{2}$ (base)(height).

10. Mr. Sullivan is making apple juice from the apples he collected in his neighbor's orchard. The number of gallons of apple juice in a tank at time t is given by the twice-differentiable function A, where t is measured in days and $0 \le t \le 20$. Values of A(t) at selected times t are given in the table below.

t (days)	0	3	8	12	20
A(t) (gallons)	2	6	9	10	7

- a. Use the data in the table to estimate the rate at which the number of gallons of apple juice in the tank is changing at time t = 10 days. Show the computations that lead to your answer. Indicate units of measure.
- b. For $0 \le t \le 12$, is there a time t at which $A'(t) = \frac{2}{3}$? Justify your answer.
- c. The number of gallons of apple juice in the tank at time t is also modeled by the function B defined by $B(t) = 3t \frac{1}{2}(t+4)^{\frac{3}{2}} + 6$, where t is measured in days and $0 \le t \le 20$. Based on the model, at what time t, for $0 \le t \le 20$, is the number of gallons of apple juice in the tank an absolute maximum?

d. For the function *B* defined in part c, the locally linear approximation near t = 5 is used to approximate *B*(5). Is this approximation an overestimate or an underestimate for the value of *B*(5)? Give a reason for your answer.