Consider the given differential equation $\frac{d y}{d x}$, where $y=f(x)$ is a particular solution with a given point. For each problem, determine if \boldsymbol{f} has a relative minimum, a relative maximum, or neither at the given point.
Justify your answer.

1. $\frac{d y}{d x}=\cos x-2 y$ where
2. $\frac{d y}{d x}=x^{3}-y^{2}$ where $f(1)=1$.
3. $\frac{d y}{d x}=\frac{y}{1-x}+x$ where $f(3)=6$. $f\left(\frac{\pi}{2}\right)=3$.

Consider the curves in the $\boldsymbol{x y}$-plane for each problem. At the point given point, is the curve increasing or decreasing? Justify your answer.
4. $x^{2}+y^{2}-3 x y=11$ at $(2,-1)$
5. $e^{x}=\cos y$ at $\left(0, \frac{3 \pi}{2}\right)$

	$\begin{array}{r} .0<\frac{x p}{\kappa p} \\ \text { əsneวəq ภิu!̣eə.รuI } \end{array}$	$0<\frac{z^{x p}}{\kappa_{z} p} \text { pue } 0=\frac{x p}{\kappa p}$ 	$0<\frac{z^{x p}}{\kappa_{z} p} \text { pue } 0=\frac{x p}{\kappa p}$ әsneэəq u!uu pəy ${ }^{\circ}$ Z	孔u!̣od әपІ $\mathcal{T} 0>\frac{x p}{\kappa p}$

