Consider the given differential equation $\frac{d y}{d x}$ ，where $y=f(x)$ is a particular solution with a given point．For each problem，determine if \boldsymbol{f} has a relative minimum，a relative maximum，or neither at the given point．
Justify your answer．
1．$\frac{d y}{d x}=\ln x+x y$ where $f(1)=-2$ ．
2．$\frac{d y}{d x}=e^{x}-y$ where $f(0)=1$ ．
3．$\frac{d y}{d x}=\sin x+y^{2}-9$ where $f(\pi)=3$ ．

Consider the curves in the $x y$－plane for each problem．At the point given point，is the curve increasing or decreasing？Justify your answer．
4．$x y=-12$ at $(-4,3)$
5．$x=y \sqrt{y^{3}+1}$ at $(6,2)$

$0<\frac{x p}{\kappa p}$ əsneวəq ภิu！seə．วขu＇S	$0<\frac{x p}{\kappa p}$ 	$0>\frac{z^{x p}}{\kappa_{z} p} \text { pue } 0=\frac{x p}{\kappa p}$ วsทセэəq xセü ןə્પ＇ε	$0<\frac{z^{x p}}{\kappa_{z} p} \text { рие } 0=\frac{x p}{\kappa p}$ әsnセวәq u！̣u［əบ｀־	วsnセวəq Јəप！！ə

