5.12 Behaviors of Implicit Relations

Calculus

CA #2

Calculus Name: CAFitZ Consider the given differential equation $\frac{dy}{dx}$, where y = f(x) is a particular solution with a given point. For each problem, determine if f has a relative minimum, a relative maximum, or neither at the given point.

Justify your answer.		, 						
1. $\frac{dy}{dx} = \ln x + xy$ where	$2. \frac{dy}{dx} = e^x - y x$	where $f(0) = 1$.	3. $\frac{dy}{dx} = \sin x + y^2$	$^2 - 9$ where				
$\int_{0}^{dx} f(1) = -2.$	dx		$\int_{ax}^{ax} f(\pi) = 3.$					
Consider the curves in the <i>xy</i> -plan	Consider the curves in the <i>xy</i> -plane for each problem. At the point given point, is the curve increasing or							
decreasing? Justify your answer.	•	r		8				
4. $xy = -12$ at $(-4, 3)$		5. $x = y\sqrt{y^3 + x^2}$	1 at (6, 2)					

5. Increasing because $\frac{\delta y}{dx} > 0.$	4. Increasing because $\frac{4y}{dx} > 0.$	3. Rel max because $\frac{dy}{dx^2} = 0$ and $\frac{d^2y}{dx^2} < 0$.	2. Rel min because $\frac{dy}{dx^2} = 0$ and $\frac{d^2y}{dx^2} > 0$.	1. Neither because $\frac{dy}{dx} < 0$ at the point.			
Answers to 5.12 CA #2							