Implicit relationships still follow the same rules as functions. If $\frac{d y}{d x}=0$ or $\frac{d y}{d x}$ does not exist at a point, then that point is a critical point. If $\frac{d^{2} y}{d x^{2}}>0$ at a point, then the graph if concave up at that point.

1. Consider the curve $3 x^{3}+3=\ln \left(4 y^{2}\right)$ in the $x y$-plane. At the point $\left(-1, \frac{1}{2}\right)$, is the curve increasing or decreasing?
2. Consider the curve $x^{2}-3=e^{y}$ in the $x y$-plane. At the point $(-2,0)$, is the curve concave up or concave down?
3. Consider the curve $y^{3}-y=x^{2}$ in the $x y$-plane. It is known that $\frac{d y}{d x}=\frac{2 x}{3 y^{2}-1}$ and $\frac{d^{2} y}{d x^{2}}=$ $\frac{2}{3 y^{2}-1}-\frac{24 x^{2} y}{\left(3 y^{2}-1\right)^{2}}$. At the point $(0,1)$ on the curve, is the point a relative max, relative min, or neither? Justify.

5.12 Behaviors of Implicit Relations

Calculus
Consider the curves in the $x y$-plane for each problem. At the point given point, is the curve increasing or decreasing? Justify your answer.

1. $x^{2}-\frac{y^{2}}{2}=-1$ at $(-1,2)$
2. $x^{\frac{2}{3}}+y^{\frac{2}{3}}=5$ at $(1,-8)$
3. $x^{2}-2 x y+y^{2}=1$ at $(-1,-2)$

Consider the given differential equation $\frac{d y}{d x}$, where $y=f(x)$ is a particular solution with a given point. For each problem, determine if \boldsymbol{f} has a relative minimum, a relative maximum, or neither at the given point. Justify your answer.
4. $\frac{d y}{d x}=y \sin x$ where $f(2 \pi)=1$

Instructions continued from last page.

5. $\frac{d y}{d x}=\frac{x}{y}+\ln x$ where $f(1)=-2$
6. $\frac{d y}{d x}=y x^{2}$ where $f(0)=-5$

5.12 Behaviors of Implicit Relations

7. Consider the curve defined by $x^{2}-y^{2}-5 x y=25$.
a. Show that $\frac{d y}{d x}=\frac{2 x-5 y}{5 x+2 y}$
b. Find the slope of the line tangent to the curve at each point on the curve when $x=2$.
c. Find the positive value of x at which the curve has a vertical tangent line. Show the work that leads to your answer.
d. Let x and y be functions of time t that are related by the equation $x^{2}-y^{2}-5 x y=25$. At time $t=3$, the value of x is 5 , the value of y is 0 , and the value of $\frac{d y}{d t}$ is -2 . Find the value of $\frac{d x}{d t}$ at time $t=3$.
