Calculus

5.12 Behaviors of Implicit Relations

Notes

Write your questions and thoughts here!

Implicit relationships still follow the same rules as functions. If $\frac{dy}{dx} = 0$ or $\frac{dy}{dx}$ does not exist at a point, then that point is a critical point. If $\frac{d^2y}{dx^2} > 0$ at a point, then the graph if concave up at that point.

1. Consider the curve $3x^3 + 3 = \ln(4y^2)$ in the xy-plane. At the point $\left(-1, \frac{1}{2}\right)$, is the curve increasing or decreasing?

2. Consider the curve $x^2 - 3 = e^y$ in the xy-plane. At the point (-2, 0), is the curve concave up or concave down?

3. Consider the curve $y^3 - y = x^2$ in the xy-plane. It is known that $\frac{dy}{dx} = \frac{2x}{3y^2 - 1}$ and $\frac{d^2y}{dx^2} = \frac{2}{3y^2 - 1} - \frac{24x^2y}{(3y^2 - 1)^2}$. At the point (0, 1) on the curve, is the point a relative max, relative min, or neither? Justify.

5.12 Behaviors of Implicit Relations

Consider the curves in the xy-plane for each problem. At the point given point, is the curve increasing or decreasing? Justify your answer.

1. $x^2 - \frac{y^2}{2} = -1$ at (-1, 2)

2. $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5$ at (1, -8)

3. $x^2 - 2xy + y^2 = 1$ at (-1, -2)

Consider the given differential equation $\frac{dy}{dx}$, where y = f(x) is a particular solution with a given point. For each problem, determine if f has a relative minimum, a relative maximum, or neither at the given point. Justify your answer.

4. $\frac{dy}{dx} = y \sin x$ where $f(2\pi) = 1$

- Instructions continued from last page.

 5. $\frac{dy}{dx} = \frac{x}{y} + \ln x$ where f(1) = -2
- 6. $\frac{dy}{dx} = yx^2 \text{ where } f(0) = -5$

5.12 Behaviors of Implicit Relations

Test Prep

- 7. Consider the curve defined by $x^2 y^2 5xy = 25$. a. Show that $\frac{dy}{dx} = \frac{2x 5y}{5x + 2y}$

b. Find the slope of the line tangent to the curve at each point on the curve when x = 2.

c. Find the positive value of *x* at which the curve has a vertical tangent line. Show the work that leads to your answer.

d. Let x and y be functions of time t that are related by the equation $x^2 - y^2 - 5xy = 25$. At time t = 3, the value of x is 5, the value of y is 0, and the value of $\frac{dy}{dt}$ is -2. Find the value of $\frac{dx}{dt}$ at time t = 3.