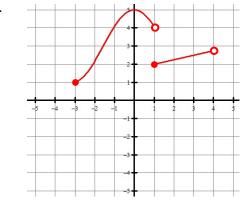
5.2 Critical Points

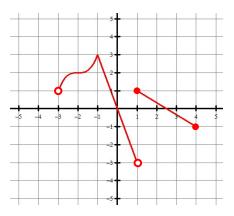
Notes

Write your questions and thoughts here!

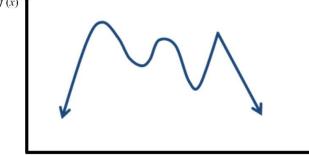

Extreme Value Theorem:

If a function f is continuous over the interval [a, b], then f has at least one minimum value and at least one maximum value on [a, b].


Global vs. Local Extrema


or

Absolute vs. Relative Extrema



Find all extreme values. Identify the type and where they occur.

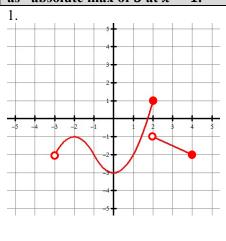
f(x)

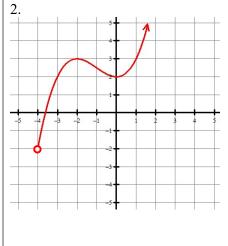
How do you find a critical point?

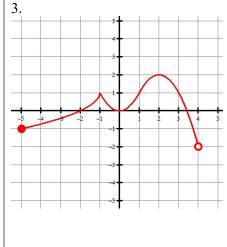
- 1.
- 2.

Find all critical points

3.
$$f(x) = \frac{1}{3}x^3 - 9x + 24$$


4.
$$g(x) = \frac{1}{\sqrt{4-x^2}}$$


5.2 Critical Points


Calculus

Practice

Find all extreme values. Identify the type and where they occur. For example, an answer could be written as "absolute max of 3 at x = 1."

 $9. \ g(x) = e^x - x$

5.2 Critical Points

Test Prep

- 10. Calculator active problem. The first derivative of the function f is given by $f'(x) = \frac{\sin^2 x}{x} \frac{2}{9}$. How many critical values does f have on the open interval (0, 10)?
 - A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Six
- 11. If f is a continuous, decreasing function on [0,10] with a critical point at (4,2), which of the following statements must be false?
 - (A) f(10) is an absolute minimum of f on [0,10].
 - (B) f(4) is neither a relative maximum nor a relative minimum.
 - (C) f'(4) does not exist
 - (D) f'(4) = 0
 - (E) f'(4) < 0