* included rel. extrema
5.2 Critical Points endpoints in case you
Calculus included them

Solutions
Find all extreme values. Identify the type and where they occur. For example, an answer could be written as "absolute max of 3 at $x=1$."
1.

rel max of -1 at $x=-2$ abs \min of -3 at $x=0$ abs max of 1 at $x=2$ * rel min of -2 at $x=4$
2.

rel min of 2 at $x=0$
3.
 rel min of 0 at $x=0$ abs max of 2 at $x=2$ * rel min of -1 at $x=-5$

Find the critical points.
4.

$$
\begin{gathered}
f(x)=4 x^{3}-9 x^{2}-12 x+3 \\
f^{\prime}(x)=12 x^{2}-18 x-12 \\
6\left(2 x^{2}-3 x-2\right)=0 \\
(2 x+1)(x-2)=0
\end{gathered}
$$

$$
x=-\frac{1}{2} \quad x=2
$$

$$
\begin{aligned}
& \text { 5. } g(t)=\frac{2}{t^{2}-4}=2\left(t^{2}-4\right)^{-1} \\
& g^{\prime}(t)=-2\left(t^{2}-4\right)^{-2}(2 t) \\
& -\frac{4 t}{\left(t^{2}-4\right)^{2}} \quad 4 t=0 \\
& t=0
\end{aligned}
$$

$$
t^{2}-4 \neq 0
$$

$t \neq \pm 2 \in$ not in domain
$t \neq \pm 2 \leftarrow$ of $g(t)$.

$$
t=0
$$

7. $f(x)=(\ln x)^{2}$

$$
f^{\prime}(x)=2 \ln x \cdot \frac{1}{x}
$$

$$
x \neq 0
$$

$x=0$ is not in the domain of $f(x)$, so it cont be a critical pt.
$\ln x=0$

$$
x=e^{0}=1
$$

$$
x=1
$$

8. $h(x)=2 \sin \left(\frac{x}{2}\right)$ where
$-2 \pi \leq x \leq 2 \pi$
$h^{\prime}(x)=\cos \left(\frac{x}{2}\right)$

$x=75 \pi \quad x=-M \quad x=m$ $\frac{x}{2}=3 \frac{\pi}{2}$
$x=34$

$$
x= \pm \eta
$$

$$
\begin{aligned}
& \text { 6. } h(x)=\sqrt[3]{x-2}=(x-2)^{\frac{1}{3}} \\
& h^{\prime}(x)=\frac{1}{3}(x-2)^{-\frac{3}{3}} \\
& \frac{1}{3 \sqrt[3]{(x-2)^{2}}} \\
& x-2 \neq 0 \\
& x \neq 2
\end{aligned}
$$

\square
9.

$$
\begin{aligned}
& g(x)=e^{x}-x \\
& g^{\prime}(x)=e^{x}-1 \\
& e^{x}-1=0 \\
& e^{x}=1 \\
& x=\ln (1)
\end{aligned}
$$

5.2 Critical Points
10. Calculator active problem. The first derivative of the function f is given by $f^{\prime}(x)=\frac{\sin ^{2} x}{x}-\frac{2}{9}$. How many critical values does f have on the open interval $(0,10)$? Graph and count the number of zeros on $(0,10)$
A) One
(B) Two
(C) Three
(D) Four
(E) Six
11. If f is a continuous, decreasing function on $[0,10]$ with a critical point at $(4,2)$, which of the following statements must be false?
(A) $f(10)$ is an absolute minimum of f on $[0,10]$.
(B) $f(4)$ is neither a relative maximum nor a relative minimum.
(C) $f^{\prime}(4)$ does not exist

The derivative must be zero
(D) $f^{\prime}(4)=0$
(E) $f^{\prime}(4)<0$ or does not exist. It con't be negative if the point is a critical point.

