5.3 Increasing and Decreasing Intervals

The following graphs show the derivative of f, f^{\prime}. Identify the intervals when f is increasing and decreasing. Include a justification statement.

Increasing:

Decreasing:

Decreasing:

For each function, find the intervals where it is increasing and decreasing, and JUSTIFY your conclusion. Construct a sign chart to help you organize the information, but do not use a calculator.
3. $h(x)=-x^{5}+\frac{5}{2} x^{4}+\frac{40}{3} x^{3}+5$
4. $f(x)=x e^{\frac{1}{x}}$
5. $g(x)=e^{\cos x}$ on the interval $[0,2 \pi]$

The derivative \boldsymbol{f}^{\prime} is given for each problem. Use a calculator to help you answer each question about \boldsymbol{f}.
6. $f^{\prime}(x)=\cos \left(x^{2}\right)$ for $0<x \leq 3$. On what intervals 7. $f^{\prime}(x)=\cos x+\sin (3 x)$ for $0 \leq x \leq \pi$. On what is f decreasing? intervals is f increasing?

For \#8-9, calculator use is encouraged.

8. A particle is moving along the y-axis at a rate modeled by $r(t)=\sin \left(e^{t}\right)$ feet per minute where t is measured in minutes. Is the particle moving up or down at $t=10$ minutes? Why?
9. A particle's position on the x-axis can be modeled by $x(t)=0.04 t^{3}+5.7 t^{2}-3$ where $x(t)$ is measured in meters and t is measured in seconds. Is the particle moving left or right at $t=17$ seconds? Why?

Answers to 5.3 CA \#1
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { 1. Increasing on }(-\infty,-3) \text { and }(2, \infty) \\ \text { because } f^{\prime}(x)>0 .\end{array} & \begin{array}{l}\text { 2. Increasing on }(-2,3) \text { because } \\ \text { Decreasing on }(-3,2) \text { because } \\ f^{\prime}(x)>0 .\end{array} & \begin{array}{l}\text { Decreasing on }(-\infty,-2) \text { and }(3, \infty) \\ \text { because } f^{\prime}(x)<0\end{array}\end{array} \begin{array}{l}\text { Increasing on }(-2,4) \text { because } \\ f^{\prime}(x)>0 . \\ \text { Decreasing on }(-\infty,-2) \text { and }(4, \infty) \\ \text { because } f^{\prime}(x)<0 \text {. }\end{array}\right)$

