Find the critical points of the graph of f.
When the slope of a function is positive, the function is increasing.

When the slope of a function is negative, the function is decreasing.

\boldsymbol{x}							
Sign of							
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$							

1. Find the intervals on which the function $f(x)=-x^{2}-4 x-1$ is increasing and decreasing and justify your answers.
a. First find the critical points.
b. In between the x-values, the derivative must be positive or negative.
c. We can use a chart to help keep track of the information. Write the critical points of the derivative first.

x	
Sign of $f^{\prime}(x)$	

d. Answer statements with justification:
2. Find the intervals on which the function $f(x)=\frac{1}{3} x^{3}-x^{2}-15 x+2$ is increasing and decreasing and justify your answers.

x	
Sign of $f^{\prime}(x)$	

Answer statements with justification:

Graph of \boldsymbol{f}^{\prime}. Is \boldsymbol{f} increasing or decreasing?

3. Determine the intervals where f is increasing and decreasing based on the graph of f^{\prime}.

Increasing:

Decreasing:

Application of rate of change

If you want to know if something is increasing or decreasing, you look at the sign of its rate of change.

The sign of a rate of change can tell you if the decreasing. Interpret the following:
$\left.\frac{\text { students }}{\text { year }}>0 \quad \frac{\text { miles }}{\text { hour }}<0 \quad \frac{\text { mastery checks }}{\text { week }}>0 \right\rvert\, \frac{\text { virus cases }}{\text { month }^{2}}<0$
4. The rate of change of fruit flies in Mr. Kelly's kitchen at time t days is modeled by $R(t)=2 t \cos \left(t^{2}\right)$ flies per day. Show that the number of flies is decreasing at time $t=3$.

5.3 Increasing and Decreasing Intervals

Practice

Calculus
The following graphs show the derivative of f, f^{\prime}. Identify the intervals when f is increasing and decreasing. Include a justification statement.
1.

Increasing:

Decreasing:
2.

Increasing:

Decreasing:

For each function, find the intervals where it is increasing and decreasing, and JUSTIFY your conclusion. Construct a sign chart to help you organize the information, but do not use a calculator.
3. $f(x)=x^{3}-12 x+1$
4. $g(x)=x^{2}(x-3)$
5. $f(x)=x^{2} e^{x}$
6. $g(t)=12(1+\cos t)$ on the interval $(0,2 \pi)$
7. $f^{\prime}(x)=\frac{x+3 e^{-x}}{x^{2}+0.8}$. On what intervals is f increasing?
8. $f^{\prime}(x)=-\sin x-x \cos x$ for $0 \leq x \leq \pi$. On which interval(s) is f decreasing?
9. $f^{\prime}(x)=\frac{1}{x}-e^{x} \sin x$ for $0<$ $x \leq 4$. On what intervals is f decreasing?

For \#10-12, calculator use is encouraged.

10. The rate of money brought in by a particular mutual fund is represented by $m(t)=\left(\frac{e}{2}\right)^{t}$ thousand dollars per year where t is measured in years. Is the amount of money from this mutual fund increasing or decreasing at time $t=5$ years? Justify your answer.
11. The number of hair follicles on Mr. Sullivan's scalp is measured by the function $h(t)=500 e^{-t}$ where t is measured in years. Is the amount of hair increasing or decreasing at $t=7$ years? Justify your answer.
12. The rate at which rainwater flows into a street gutter is modeled by the function $G(t)=10 \sin \left(\frac{t^{2}}{30}\right)$ cubic feet per hour where t is measured in hours and $0 \leq t \leq 8$. The gutter's drainage system allows water to flow out of the gutter at a rate modeled by $D(t)=-0.02 x^{3}+0.05 x^{2}+0.87 x$ for $0 \leq t \leq 8$. Is the amount of water in the gutter increasing or decreasing at time $t=4$ hours? Give a reason for your answer.

5.3 Increasing and Decreasing Intervals

13.

x	1	2	3	4	5
$f(x)$	-6	-1	3	6	8

The table above gives values of a function f at selected values of x. If f is twice-differentiable on the interval $1 \leq x \leq 5$, which of the following statements could be true?
(A) $\quad f^{\prime}$ is negative and decreasing for $1 \leq x \leq 5$.
(B) $\quad f^{\prime}$ is negative and increasing for $1 \leq x \leq 5$.
(C) $\quad f^{\prime}$ is positive and decreasing for $1 \leq x \leq 5$.
(D) $\quad f^{\prime}$ is positive and increasing for $1 \leq x \leq 5$.
14. Let f be the function given by $f(x)=4-x . g$ is a function with derivative given by

$$
g^{\prime}(x)=f(x) f^{\prime}(x)(x-2)
$$

On what intervals is g decreasing?
(A) $(-\infty, 2]$ and $[2, \infty)$
(B) $(-\infty, 2]$ only
(C) $[2,4]$ only
(D) $[2, \infty)$ only
(E) $[4, \infty)$ only
15. Particle X moves along the positive x-axis so that its position at time $t \geq 0$ is given by $x(t)=2 t^{3}-4 t^{2}+4$.
(a) Is particle X moving toward the left or toward the right at time $t=2$? Give a reason for your answer.
(b) At what time $t \geq 0$ is particle X farthest to the left? Justify your answer.
(c) A second particle, Y, moves along the positive y-axis so that its position at time t is given by $y(t)=4 t+$ 5. At any time $t, t \geq 0$, the origin and the positions of the particles X and Y are the vertices of a rectangle in the first quadrant. Find the rate of change of the area of the rectangle at time $t=2$. Show the work that leads to your answer.

