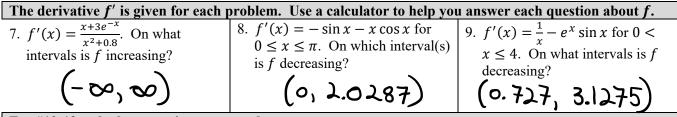
5.3 Increasing and Decreasing Intervals

Dec on (-2,0) b/c f'(x) LO

Practice

Calculus

The following graphs show the derivative of f, f'. Identify the intervals when f is increasing and decreasing. Include a justification statement. 2. 1. f' f'(x)Increasing: (-w, -1.5) and (-0.5, w) Increasing: (-1,0) and (3,0) b/c because 5'(x)>0 5'(x)>0. Decreasing: $(-\infty)^{-1}$ and (0, 3) $\frac{b}{f}(x) \leq 0$ Decreasing: (-1.5, -0.5) b/ (-1.5, -0.5)For each function, find the intervals where it is increasing and decreasing, and JUSTIFY your conclusion. Construct a sign chart to help you organize the information, but do not use a calculator. 3. $f(x) = x^3 - 12x + 1$ 4. $g(x) = x^2(x-3)$ $g'(x) = 2x(x-3) + x^{2}$ $2x^{2} - 6x + x^{2} = 0$ $5'(x) = 3x^2 - |\lambda| = 0$ 3x2=12 $\times (3 \times -6) = 0$ $\times = 0$ $\times = 2$ x^{-+} $\frac{\times (-\infty, -\lambda) - \lambda (-\lambda, \lambda)}{5'(x) \rhoos} | 0 \rhoos | 0 \rhoos$ $\frac{X (-\infty, o) o (o, \lambda) \lambda (\lambda, \infty)}{f'(x) \rho o s o neg O \rho o s}$ Increasing on $(-\infty, 0)$ and $(2,\infty)$ because f'(x) > 0. Decreasing on (-2,2) because רא)≮ס Increasing on (-00, -2) and Decreasing on (0,2) because f'(x)<0] $(2,\infty)$ because f'(x) > 06. $g(t) = 12(1 + \cos t)$ on the interval $(0, 2\pi)$ 5. $f(x) = x^2 e^x$ $f'(x) = \lambda e^{x} + \lambda e^{x}$ g'(t) = -12 sint t = 0sint = 0 t = 17t = 217 $xe^{x}(\lambda + x) = 0$ X=0 [e =0] X+2=0 Not Possible X=-2 $X \circ (\circ, n) M (n, n) 2Ti$ $f'(x) \circ neg o pos o$ (-∞,-))-2(-2,0) 0 (0,∞) x) 005 0 100 00 000 Increasing on (TI, 211) b/c f'>0. Inc on (-20, -2) and (0,00) b/c Dec. on (0, 11) b/ f'<0. f'(x)>0



For #10-12, calculator use is encouraged.

10. The rate of money brought in by a particular mutual fund is represented by $m(t) = \left(\frac{e}{2}\right)^t$ thousand dollars per year where t is measured in years. Is the amount of money from this mutual fund increasing or decreasing at time t = 5 years? Justify your answer.

11. The number of hair follicles on Mr. Sullivan's scalp is measured by the function $h(t) = 500e^{-t}$ where t is measured in years. Is the amount of hair increasing or decreasing at t = 7 years? Justify your answer.

$$h'(7) = -0.4559$$
 Decreasing because $h'(7) < 0$.

12. The rate at which rainwater flows into a street gutter is modeled by the function $G(t) = 10 \sin\left(\frac{t^2}{30}\right)$ cubic feet per hour where t is measured in hours and $0 \le t \le 8$. The gutter's drainage system allows water to flow out of the gutter at a rate modeled by $D(t) = -0.02x^3 + 0.05x^2 + 0.87x$ for $0 \le t \le 8$. Is the amount of water in the gutter increasing or decreasing at time t = 4 hours? Give a reason for your answer.

G(4) - D(4) = 2.084

Increasing b/c 6(4)-D(4)>0.

 $m(5) \approx 4.6379$

5.3 Increasing and Decreasing Intervals

Test Prep

13.

(C)

x	1	2	3	4	5
f(x)	-6	-1	3	6	8

The table above gives values of a function f at selected values of x. If f is twice-differentiable on the interval $1 \le x \le 5$, which of the following statements could be true?

- (A) f' is negative and decreasing for $1 \le x \le 5$.
- (B) f' is negative and increasing for $1 \le x \le 5$.
 - f' is positive and decreasing for $1 \le x \le 5$.
- (D) f' is positive and increasing for $1 \le x \le 5$.



- 15. Particle X moves along the positive x-axis so that its position at time $t \ge 0$ is given by $x(t) = 2t^3 4t^2 + 4$.
 - (a) Is particle X moving toward the left or toward the right at time t = 2? Give a reason for your answer.

$$X'(t) = 6t^2 - 8t$$

 $X'(a) = 24 - 16 = 8$
Right because $X'(t) > 0$.

(b) At what time $t \ge 0$ is particle X farthest to the left? Justify your answer.

(c) A second particle, Y, moves along the positive y-axis so that its position at time t is given by y(t) = 4t + 5. At any time $t, t \ge 0$, the origin and the positions of the particles X and Y are the vertices of a rectangle in the first quadrant. Find the rate of change of the area of the rectangle at time t = 2. Show the work that leads to your answer.

