For each problem, the graph of $\boldsymbol{f}^{\prime}$, the derivative of $\boldsymbol{f}$, is shown. Find all relative max/min of $\boldsymbol{f}$ and justify.
1.

2.


For each problem, the derivative of a function $\boldsymbol{g}$ is given. Find all relative max/min of $\boldsymbol{g}$ and justify.
3. $g^{\prime}(x)=\frac{x^{2}-5}{x}$ for all $x \neq 0$.
4. $g^{\prime}(x)=(3-x) x^{-2}$ for $x>0$

## Use the First Derivative Test to locate the $\boldsymbol{x}$-value of all extrema. Classify if it is a relative max or min, and

 justify your answer.5. $h(x)=-2 x^{3}+6 x^{2}-3$
6. $f(x)=x e^{\frac{1}{x}}$
7. What is the relative minimum value of $f(x)=x^{3}-3 x^{2}+1$ ?

Answers to 5.4 CA \#1

| 1. Min at $x=-3$ and $x=3$ because $f^{\prime}$ changes sign from negative to positive. <br> Max at $x=-1$ because $f^{\prime}$ changes sign from positive to negative. |  | 2. Min at $x=-2$ changes sign from <br> Max at $x=0$ bec from positive to ne | $\mathrm{d} x=1$ because $f^{\prime}$ gative to positive. <br> $f^{\prime}$ changes sign tive. | 3. Min because to positi No Ma | $=-\sqrt{5} \text { and } x=\sqrt{5}$ <br> changes sign from negative |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4. Max at $x=3$ because $f^{\prime}$ changes sign from positive to negative. | 5. Min at $x=0$ because $f^{\prime}$ <br> changes sign from negative to <br> positive. 6. Min at $x=1$ because $f^{\prime}$ <br> changes sign from negative to <br> positive. <br> Max at $x=2$ because $f^{\prime}$ <br> changes sign from positive to to <br> negative. No max at $x=0$ because it <br> is not a critical point. $x=0$ <br> is not in the domain of $f$. |  |  |  | 7. Min value of -3 at $x=2$ |

