For each problem, the graph of $f^{\prime}$, the derivative of $\boldsymbol{f}$, is shown. Find all relative max/min of $\boldsymbol{f}$ and justify.
1.

2.


For each problem, the derivative of a function $\boldsymbol{g}$ is given. Find all relative max/min of $\boldsymbol{g}$ and justify.
3. $g^{\prime}(x)=(x-2)(x+5)$
4. $g^{\prime}(x)=3 x^{2}-12$

## Use the First Derivative Test to locate the $x$-value of all extrema. Classify if it is a relative max or min, and

 justify your answer.5. $h(x)=x^{3}-\frac{3}{2} x^{2}$
6. $f(x)=x e^{x}$
7. What is the relative maximum value of $f(x)=\frac{1}{x}+x$ ?

Answers to 5.4 CA \#2

| 1. Min at $x=4$ because $f^{\prime}$ changes <br> sign from negative to positive. 2 . Min at $x=-2$ because $f^{\prime}$ changes <br> sign from negative to positive. 3 . Min at $x=2$ because $f^{\prime}$ changes <br> sign from negative to positive. <br> Max at $x=0$ because $f^{\prime}$ changes sign <br> from positive to negative. Max at $x \approx 3.4$ because $f^{\prime}$ changes <br> sign from positive to negative. Max at $x=-5$ because $f^{\prime}$ changes <br> sign from positive to negative. <br> 3. Min at $x=2$ because $f^{\prime}$ <br> changes sign from negative to <br> positive. 5. Min at $x=1$ because $f^{\prime}$ <br> changes sign from negative to to <br> positive. 6. Min at $x=-1$ because $f^{\prime}$ <br> changes sign from negative to <br> positive. <br> Max at $x=-2$ because $f^{\prime}$ <br> changes sign from positive to <br> negative. Max value of 2 at $x=1$ <br> Man $x=0$ because $f^{\prime}$ <br> changes sign from positive to <br> negative. No Max |
| :--- |

