The First Derivative Test is when we use the first derivative to "test" whether or not a function has a maximum or minimum.

Start with something we know. A quadratic function's graph is a parabola. We know $f(x)=x^{2}-4 x-2$ opens up, so f will have a minimum. Examine the graph of this parabola and describe the behavior of $f^{\prime}(x)$ around the minimum.

Justification statements

Assume c and d are critical numbers of a function f.
There is a minimum value at $x=c$ because
There is a maximum value at $x=d$ because

1. Use the First Derivative Test to find the x-values of any relative extrema of $f(x)=$ $\left(x^{2}-4\right)^{\frac{2}{3}}$.

If $\boldsymbol{h}(\boldsymbol{c})$ does not exist, then $\boldsymbol{x}=\boldsymbol{c}$ cannot be a critical point.

2. Find the relative \max / min of the function $h(x)=\frac{x^{2}}{4-x}$

5.4 The First Derivative Test

Calculus

Practice

1. Assume $f(x)$ is continuous for all real numbers. The sign of its derivative is given in the table below for the domain of f. Identify all relative extrema and justify your answers.

Interval	$(-\infty,-2)$	$(-2,0)$	$(0,3)$	$(3, \infty)$
$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	Positive	Negative	Negative	Positive

For each problem, the graph of \boldsymbol{f}^{\prime}, the derivative of \boldsymbol{f}, is shown. Find all relative max/min of \boldsymbol{f} and justify.
2.

3.

For each problem, the derivative of a function \boldsymbol{g} is given. Find all relative max/min of \boldsymbol{g} and justify.
4. $g^{\prime}(x)=(x+4) e^{x}$
5. $g^{\prime}(x)=x^{2}+5 x+4$

Use a calculator to help find all x-values of relative max $/ \min$ of \boldsymbol{f}. No justification necessary.
6. $f^{\prime}(x)=x^{3}-6 \cos \left(x^{2}\right)+2$
7. $f^{\prime}(x)=\frac{2-\ln x}{x^{2}}$
8. $f^{\prime}(x)=\sqrt{x^{4}+2}+x^{2}-5 x$

Use the First Derivative Test to locate the x-value of all extrema. Classify if it is a relative max or min and justify your answer.
9. $f(x)=x^{3}-12 x+1 \quad$ 10. $g(x)=x e^{5 x}$
11. $h(x)=\frac{x^{3}}{x+1}$
12. $f(x)=(x-5)^{\frac{2}{3}}$
13. What is the maximum value of $g(x)=2 \cos x$ on the open interval $(-\pi, \pi)$?
14. What is the relative minimum value of $h(x)=-x^{3}+6 x^{2}-3$?

5.4 The First Derivative Test

15. If g is a differentiable function such that $g(x)<0$ for all real numbers x and if $f^{\prime}(x)=\left(x^{2}-x-12\right) g(x)$, which of the following is true?
(A) $\quad f$ has a relative maximum at $x=-3$ and a relative minimum at $x=4$.
(B) $\quad f$ has a relative minimum at $x=-3$ and a relative maximum at $x=4$.
(C) $\quad f$ has a relative maximum at $x=3$ and a relative minimum at $x=-4$.
(D) $\quad f$ has a relative minimum at $x=3$ and a relative maximum at $x=-4$.
(E) It cannot be determined if f has any relative extrema.
16. Let f be a twice-differentiable function defined on the interval $-2.1<x<2.1$ with $f(1)=-2$. The graph of f^{\prime}, the derivative of f, is shown above. The graph of f^{\prime} crosses the x-axis at $x=-2$ and $x=2$ and has a horizontal tangent at $x=-1$. Let g be the function given by $g(x)=e^{f(x)}$.
(a) Write an equation for the line tangent to the graph of g at $x=1$.

(b) Find the average rate of change of g^{\prime}, the derivative of g, over the interval $[-2,2]$.
(c) For $-2.1<x<2.1$, find all values of x at which g has a local minimum. Justify your answer.
(d) The second derivative of g is $g^{\prime \prime}(x)=e^{f(x)}\left[\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x)\right]$. Is $g^{\prime \prime}(-1)$ positive, negative or zero? Justify your answer.
