Find the absolute maximum value and the absolute minimum value of the function on the given interval. Remember to show that you checked ALL the candidates.

$$
\text { 1. } \begin{aligned}
& f(x)=1+(x+1)^{2}, \quad[-2,5] \\
& f^{\prime}(x)=2(x+1) \\
& 2 x+2=0 \\
& x=-1 \\
& f(-2)=2 \\
& f(-1)=11 \leftarrow \text { abs min } \\
& f(5)=37 \leftarrow \text { abs max }
\end{aligned}
$$

3.

$$
\begin{array}{r}
f(x)=\frac{x}{x^{2}+1},[-2,2] \\
f^{\prime}(x)=\frac{1\left(x^{2}+1\right)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+1=0}{\left(x^{2}+1\right)^{2}} \\
x= \pm 1
\end{array}
$$

$$
\text { 2. } \begin{gathered}
f(x)=2 x^{3}+3 x^{2}+4 \quad[-2,1] \\
f^{\prime}(x)=6 x^{2}+6 x \\
6 x(x+1)=0 \\
x=0 \quad x=-1
\end{gathered}
$$

$f(-2)=0$ - abs min

$$
f(-1)=5
$$

$$
f(0)=4
$$

$f(1)=9$ abs max

$$
f(-2)=-0.4
$$

$$
f(-1)=-0.5<\mathrm{abs} \mathrm{~min}
$$

$$
f(0)=\frac{\sqrt{3}}{2}
$$

$f(\pi / 4)=(1) \leftarrow a b s$ max

$$
f(1)=0.5 \longleftarrow \text { abs } \max
$$ $f\left(5 \frac{\pi}{4}\right)=-1=a b s \min$

$$
f(2)=0.4
$$

5. $g(x)=x e^{2 x}{ }_{2 x}[-1,1]$
$g^{\prime}(x)=(1) e^{2 x}+x e^{2 x} \cdot 2$

$$
e^{2 x}(1+2 x)=0
$$

$$
x=-\frac{1}{2}
$$

$g(-1)=-e^{-2}=-\frac{1}{e^{2}}$
$g\left(-\frac{1}{2}\right)=-\frac{1}{2} e^{-1}=-\frac{1}{2 e} \leftarrow$ abs $\quad e^{2}$
$g(1)=e^{2} \leftarrow a b s$ max $f\left(\frac{7 \pi}{4}\right)=0$

$$
\text { 6. } \begin{gathered}
f(x)=x^{3}+2 x^{2}+x-5 \quad[-2,2] \\
f^{\prime}(x)=3 x^{2}+4 x+1 \\
(3 x+1)(x+1)=0 \\
x=-\frac{1}{3} \quad x=-1
\end{gathered}
$$

$$
f(-2)=-7<a b s \min
$$

$$
f(-1)=-5
$$

$$
f\left(-\frac{1}{3}\right)=-5.148
$$

$f(2)=13 \leftarrow$ abs max

The graph of \boldsymbol{f}^{\prime}, the derivative of \boldsymbol{f}, is shown for each problem. At what \boldsymbol{x}-value does \boldsymbol{f} have an absolute maximum and absolute minimum?
7.

Absolute max at $x=$ \qquad
Absolute \min at $x=$
8.

Domain: $-3.5 \leq x \leq 3$

Absolute max at $x=-3$
Absolute \min at $x=$
5.5 Determine Absolute Extrema from Candidates
9. No calculator allowed for this problem. Let f be the function defined by $f(x)=\cos ^{2} x-\cos x$ for $0 \leq x \leq$ $\frac{3 \pi}{2}$. Find the absolute maximum value and the absolute minimum value of f.

$$
\begin{aligned}
& f^{\prime}(x)= 2 \cos x(-\sin x)+\sin x \\
&-2 \cos x \sin x+\sin x=0 \\
& \sin x(-2 \cos x+1)=0 \\
& \sin x=0 \text { or } \cos x=\frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\sin x=0 & \cos x=\frac{1}{2} \\
x=0 & x=\pi / 3 \\
x=\pi &
\end{array}
$$

$$
\begin{aligned}
& f(0)=0 \\
& \left.f\left(\frac{5}{5}\right)=-\sigma_{14}\right) \\
& f(\pi)=(2)<\text { abs } \\
& f(312)=0 \quad \text { max }
\end{aligned}
$$

10. Consider the function $f(x)=\left\{\begin{array}{r}x^{2}, 0 \leq x<1 \\ 0, \\ 1 \leq x \leq 2\end{array}\right.$. Which of the following is true?

$$
f^{\prime}= \begin{cases}2 x & (0,1 \leq x \leq 2 \\ 0 & 0\end{cases}
$$

no x

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=0 \\
& f(2)=0
\end{aligned}
$$

(A) f attains an absolute maximum value of 1.
(B) f attains an absolute minimum value of 0 .
(C) f attains an absolute maximum value of 1 somewhere on the interval $[0,2]$.
(D) f does not attain an absolute minimum value.
(E) Both (A) and (C).
11. A particle moves along the y-axis so that its velocity at time $t, 0 \leq t \leq 6$, is given by $v(t)=2(t-2)(t-5)$. Find the minimum velocity of the particle.

$$
\begin{gathered}
V^{\prime}(t)=2(1)(t-5)+2(t-2)(1) \\
v^{\prime}(t)=2 t-10+2 t-4 \\
v^{\prime}(t)=4 t-14 \\
4 t-14=0 \\
\quad t=7 / 2
\end{gathered}
$$

12. A particle moves along the x-axis with position at time t given by $x(t)=e^{-t} \cos t$ for $0 \leq t \leq 2 \pi$. Find the time t at which the particle is farthest to the right.

$$
\begin{array}{clr}
x^{\prime}(t)=e^{-t}(-1) \cos t+e^{-t}(-\sin t) & \\
& -e^{-t}(\cos t+\sin t)=0 & \\
-e^{-t}=0 \text { or } \cos t+\sin t=0 & & x\left(\frac{3 \pi}{4}\right)=1 \\
T \quad \cos t=-\sin t & & x\left(\frac{7 \pi}{4}\right)=0.0003 \\
\text { not possible } \quad t=\frac{3 \pi}{4}, \frac{7 \pi}{4} & & x(2 \pi)=0.002 \\
& & t=0
\end{array}
$$

13. Find the maximum acceleration attained on the interval $0 \leq t \leq 3$ by the particle whose velocity is given by $v(t)=\frac{2}{3} t^{3}-4 t^{2}+8 t-2 . \quad$ Find abs max of $a(t)$ on the interval.

$$
\begin{aligned}
& a(t)=2 t^{2}-8 t+8 \\
& a^{\prime}(t)=4 t-8
\end{aligned}
$$

Critical
point: $4 t-8=0$

$$
t=2
$$

$$
\begin{aligned}
& a(0)=8 \leftarrow \text { max } \\
& a(2)=0 \\
& a(3)=2
\end{aligned}
$$

