5.6 Determining Concavity

Calculus Name: Find the point(s) of inflection for each function. Justify your answer.

1. $g(x) = -x^3 + x^2 - 4$

2. $g(x) = 2\cos x + x$ on the interval $(0, 2\pi)$

3. $f(x) = xe^x$

 $4. \quad f(x) = x^{\frac{2}{5}}$

State the intervals of concavity.
5.
$$f(t) = t^3 - 12t^2 + 45t + 7$$

$$6. \quad g(x) = \frac{x}{x+2}$$

The graph of f'(x) is shown. Find the point(s) of inflection.

7.

8

The graph of f''(x) is shown. State the intervals of concavity of f(x) and find the point(s) of inflection.

9.

10.

Does the line tangent to the graph of h at the given value of x lie above or below the graph of h? Why?

11.
$$h(x) = e^x - x^3$$
 at $x = -2$

12.
$$h(x) = 5x^2 - 2x^3$$
 at $x = 1$

Answers to 5.6 CA #1

Answers to 3.0 CA #1					
1. $x = \frac{1}{3}$ because $g''(x)$ changes sign.	2. $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$ because $g''(x)$ changes sign.	3. $x = -2$ because $f''(x)$ changes sign.		4. No point of inflection because $f''(x)$ sign does not change.	
5. Concave down: $(-\infty, 4)$ Concave up: $(4, \infty)$	6. Concave up: $(-2, \infty)$ Concave down: $(-\infty, -2)$	7. $x = -1, 0, 2$		8. $x = -2, 2$	
9. pts of inflection at $x = -3$	$\frac{3}{10}$ 10. pts of inflection at $x =$				12 1

- 9. pts of inflection at x = -3, Concave up: $(-\infty, -3)$ and $(3, \infty)$
- Concave down: (-3,3)
- 10. pts of inflection at x = -2, 0, 1Concave up: (-2, 0) and $(1, \infty)$ Concave down: $(-\infty, -2)$ and (0, 1)
- 11. Below because h''(-2) > 0
- 12. Above because h''(1) < 0