What is concavity? The state or quality of being concave.
Concave up:
Concave down:

If a function is concave up (like a parabola), what is f^{\prime} is doing.

If f is concave up, then f^{\prime} is \quad If f is concave down, then f^{\prime}
This leads us to the following...

$$
f^{\prime \prime}>0 \text { means } f \text { is }
$$

$$
f^{\prime \prime}<0 \text { means } f \text { is }
$$

1. Find the intervals of concavity for $f(x)=\frac{1}{4} x^{4}-6 x^{2}+x-3$.

Point of Inflection

There is a point of inflection of f at $x=c$ if $f(c)$ is defined and $f^{\prime \prime}$ changes signs at $x=c$.
In other words, a point of inflection is where the graph

Two common mistakes when finding a point of inflection

1. Assuming that
2. Assuming that
means there is a point of inflection. means there is no point of inflection.
3. Given the graph of \boldsymbol{f}^{\prime}, find the points of inflection and state the intervals of concavity.

4. Given the graph of $\boldsymbol{f}^{\prime \prime}$, find the points of inflection and state the intervals of concavity.

5. Does the line tangent to the graph of $f(x)=x e^{-x}$ at $x=1$ lie above or below the graph of f ? Why?

5.6 Determining Concavity

Calculus

Practice

1.

\boldsymbol{x}	$-3<x<-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}<x<3$
$g^{\prime \prime}(x)$	Positive	0	Negative

Use the table above to find the following.

Intervals where $g(x)$ is concave up: \mid Intervals where $g(x)$ is concave down:

Point(s) of Inflection:

Find the point(s) of inflection for each function. Justify your answer.
2. $f(x)=\sin \frac{x}{2}$ on the interval $(-\pi, 3 \pi) \quad$ 3. $f(x)=e^{-x^{2}}$
4. $h(x)=\left(2 x^{2}-5\right)^{2}$
5. $f(x)=2 x^{4}-8 x+3$

State the intervals of concavity and justify your answer.

6. $g(x)=\frac{x}{x-1}$
7. $f(x)=x^{3}-12 x$

The graph of $f^{\prime}(x)$ is shown. Find the point(s) of inflection.

8.

10.

The graph of $f^{\prime \prime}(x)$ is shown. Find the point(s) of inflection.

11.

13.

Does the line tangent to the graph of \boldsymbol{h} at the given value of \boldsymbol{x} lie above or below the graph of \boldsymbol{h} ? Why?
14. $h(x)=2 x^{3}-4 x^{2}-3 x$ at $x=-2$
15. $h^{\prime}(x)=\frac{x^{2}-4}{x}$ at $x=2$

5.6 Determining Concavity

Test Prep
16. Calculator active problem. Let $f^{\prime \prime}(x)=\sin x^{2}$. Which of the following three statements are true?
I. f is concave up on $(0,1.77)$ and $(2.51,3.06)$.
II. f is concave down on $(1.78,2.50)$.
III. $\quad f^{\prime}$ is increasing on $(0,1.77)$.
(A) I and II only
(D) II and III only
(B) I and III only
(E) III only
(C) I, II, and III
17. Consider the differential equation $\frac{d y}{d x}=4 x+y$. Find $\frac{d^{2} y}{d x^{2}}$. Determine the concavity of all solution curves for the given differential equation in Quadrant I. Give a reason for your answer.
18. Write an equation of the line tangent to $y=x^{3}-3 x^{2}-4$ at its point of inflection.
19. If the graph of $y=x^{3}+a x^{2}+b x-4$ has a point of inflection at $(1,-6)$, what is the value of b ?
(A) -3
(B) 0
(C) 1
(D) 3
(E) It cannot be determined from the information given.

