
5.7 The Second Derivative Test

Write your questions and thoughts here!

- a. Identify the relative extrema.
- b. What do we know about the value of f'(x) at each extrema?
- c. What do we know about the value of f''(x) at each extrema?

The Second Derivative Test:

Suppose f'(c) = 0. Then...

- If f''(c) > 0, then f has a relative minimum at x = c.
- If f''(c) < 0, then f has a relative maximum at x = c.
- 1. Use the second derivative test to find the relative extrema of $f(x) = x^4 2x^2$.

2. Use the second derivative test to find the relative extrema of $f(x) = \sqrt{2}x - 2\cos x$ on the interval $[0, 2\pi]$

If there is only _____ critical point, and that CP is an extremum (max or min), then it is an extremum (max or min).

$$3. \quad f(x) = -xe^{\frac{x}{4}}$$

5.7 The Second Derivative Test

Practice

Find the relative extrema by using the Second Derivative Test. Justify your answer.

1. $f(x) = 5 + 3x^2 - x^3$ 2. $h(x) = (2x - 5)^2$

- 3. $g(x) = x + 2 \sin x$ on the interval $(0, 2\pi)$
- $4. f(x) = 2x^4 8x + 3$

5. Which of the following statements about the function given by $f(x) = x^4 - 2x^3$ is true?

- (A) The graph of the function has two points of inflection, and the function has one relative extremum.
- (B) The graph of the function has one point of inflection, and the function has two relative extrema.
- (C) The graph of the function has two points of inflection, and the function has two relative extrema.
- (D) The graph of the function has two points of inflection, and the function has three relative extrema.
- (E) The function has no relative extremum.
- 6. At what value(s) of x does $f(x) = x^4 8x^2$ have a relative minimum?

- (A) 0 and -2 only
- (B) 0 and 2 only
- (C) 0 only

- (D) -2 and 2 only
- (E) -2, 0, and 2 only
- 7. What is the maximum value of the <u>derivative</u> of $f(x) = 3x^2 x^3$?

- (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4