1. $f(x)=5+3 x^{2}-x^{3}$

$$
\begin{aligned}
& f^{\prime}(x)=6 x-3 x^{2} \\
& 3 x(2-x)=0 \\
& x=0 \quad x=2 \\
& f^{\prime \prime}(x)=6-6 x \\
& f^{\prime \prime}(0)=6 \\
& f^{\prime \prime}(2)=6-6(2)=-6
\end{aligned}
$$

Rel. min at $x=0$ because $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)>0$.
Rel. max at $x=2$ because $f^{\prime}(\alpha)=0$ and $f^{\prime \prime}(\alpha)<0$.
3. $g(x)=x+2 \sin x$ on the interval $(0,2 \pi)$
$g^{\prime}(x)=1+2 \cos x=0$

$$
g^{\prime \prime}(x)=-2 \sin x
$$

$$
g^{\prime \prime}(2 \pi / 3)=-2\left(\frac{\sqrt{3}}{2}\right)<0
$$

$$
g^{\prime \prime}\left(4 \frac{1}{3}\right)=-2\left(-\frac{\sqrt{3}}{2}\right)>0
$$

Rel. \max at $x=2 \pi / 3 \quad b / c \quad g^{\prime}\left(\frac{2 \pi}{3}\right)=0$ and $g^{\prime \prime}\left(\frac{2 \pi}{3}\right)<0$.
Rel. min at $x=4 \pi / 3 \quad b / c \quad g^{\prime}\left(\frac{4 \pi}{3}\right)=0$ and $g^{\prime \prime}\left(\frac{4 \pi}{3}\right)>0$.

$$
\begin{array}{r}
\text { 2. } h(x)=(2 x-5)^{2} \\
h^{\prime}(x)=2(2 x-5) \cdot(2) \\
8 x-20=0 \\
x=5 / 2 \\
h^{\prime \prime}(x)=8 \\
h^{\prime \prime}(5 / 2)=8
\end{array}
$$

Abs min at $x=\frac{5}{2}$ because $h^{\prime}\left(\frac{y}{2}\right)=0$ and $h^{\prime \prime}\left(\frac{5}{2}\right)>0$.

$$
\begin{aligned}
& \text { 4. } f(x)=2 x^{4}-8 x+3 \\
& f^{\prime}(x)=8 x^{3}-8=0 \\
& x^{3}=1 \\
& x=1 \\
& f^{\prime \prime}(x)=24 x^{2} \\
& f^{\prime \prime}(1)=24>0
\end{aligned}
$$

Abs. min at $x=1$ because $f^{\prime}(1)=0$ and $f^{\prime \prime}(1)>0$.
5. Which of the following statements about the function given by $f(x)=x^{4}-2 x^{3}$ is true?

$$
f^{\prime \prime}(0)=0
$$

$$
f^{\prime \prime}\left(\frac{z}{z}\right)>0
$$

$$
\min .
$$

(A) The graph of the function has two points of inflection, and the function has one relative extremum.
(B) The graph of the function has one point of inflection, and the function has two relative extrema.
(C) The graph of the function has two points of inflection, and the function has two relative extrema.
(D) The graph of the function has two points of inflection, and the function has three relative extrema.
(E) The function has no relative extremum.
6. At what values) of x does $f(x)=x^{4}-8 x^{2}$ have a relative minimum?

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-16 x \\
& 4 x\left(x^{2}-4\right)=0 \\
& x=0, x= \pm 2
\end{aligned}
$$

$$
\begin{array}{ll}
f^{\prime \prime}(x)=12 x^{2}-16 & f^{\prime \prime}(-2)>0 \\
& f^{\prime \prime}(0)<0 \\
& f^{\prime \prime}(2)>0
\end{array}
$$

(A) 0 and -2 only
(B) 0 and 2 only
(C) 0 only
(D) -2 and 2 only
(E) $-2,0$, and 2 only
means y-value
7. What is the maximum Glue the derivative of $f(x)=3 x^{2}-x^{3}$?

$$
\begin{aligned}
& f^{\prime}(x)=6 x-3 x^{2} \leftarrow \text { Find max of } f^{\prime} \\
& f^{\prime \prime}(x)=6-6 x \\
& 6-6 x=0 \\
& x=1
\end{aligned}
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-6 x^{2} \rightarrow 2 x^{2}(2 x-3)=0 \\
& f^{\prime \prime}(x)=12 x^{2}-12 x \quad x=0 \quad x=\frac{3}{2} \\
& \left.\begin{array}{l|l|l|l|l}
12 x(x-1)=0 \\
s^{\prime \prime}(x) & (-\infty, 0) & 0 & (0,1) & 1 \\
\hline
\end{array}+1, \infty\right) \quad 2 \text { pts of } \\
& f^{\prime \prime}(x)=12 x^{2}-12 x \\
& x=0 \quad x=\frac{3}{2}
\end{aligned}
$$

