5.7 The Second Derivative Test

Calculus

Solutions

Practice

Find the relative extrema by using the Second Derivative Test. Justify your answer.

1. $f(x) = 5 + 3x^2 - x^3$ $5'(x) = 6x - 3x^2$ 3x(2 - x) = 0 x = 0 $x = 25''(x) = 6 - 6x5''(x) = 65''(x) = 6 - 6(x) = -6$	$\frac{2. h(x) = (2x - 5)^{2}}{h(x) = \lambda (2x - 5) \cdot (\lambda)}$ $8x - 20 = 0$ $x = 5x$ $h''(x) = 8$ $h''(x) = 8$
Rel. min at X=0 because f'(0)=0 and $f''(0)>0$. Rel. max at X=2 because f'(2)=0 and $f''(2)<0$.	Abs min at $x = \hat{x}$ because $h'(\hat{x}) = 0$ and $h''(\hat{x}) > 0$.
3. $g(x) = x + 2 \sin x$ on the interval $(0, 2\pi)$ $g'(x) = 1 + 2\cos x = 0$ $\cos x = -\frac{1}{2}$ $x = \frac{1}{2}$ $x = \frac{1}{2}$ $g''(x) = -2\sin x$ $g''(x) = -2\sin x$	4. $f(x) = 2x^4 - 8x + 3$ $5'(x) = 8x^3 - 8 = 0$ $x^3 = 1$ x = 1 $5''(x) = 24x^3$ 5''(1) = 24 > 0
Rel. max at x=治 b/c g'(洪)=0 and g''(資)<0. Rel. min at x=指 b/c g'(指)=0 and g''(對)>0.	

5.7 The Second Derivative Test

Test Prep

5. Which of the following statements about the function given by $f(x) = x^4 - 2x^3$ is true?

 $f'(x)=4x^3-6x^2 \longrightarrow 2x^2(2x-3)=0$ 5"(0) = 0 5"(3)>0 min.

(A) The graph of the function has two points of inflection, and the function has one relative extremum.

- (B) The graph of the function has one point of inflection, and the function has two relative extrema.
- (C) The graph of the function has two points of inflection, and the function has two relative extrema.
- (D) The graph of the function has two points of inflection, and the function has three relative extrema.
- (E) The function has no relative extremum.
- 6. At what value(s) of x does $f(x) = x^4 8x^2$ have a relative minimum?

