
Match each function with the graph of its derivative.

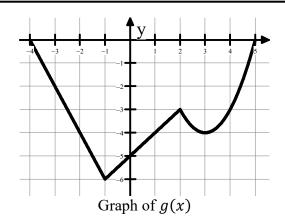
21. Using the figure below, complete the chart by indicating whether each value is positive (+), negative (-), or zero (0) at the indicated points. For these problems, if the point appears to be a max or min, assume it is. If it appears to be a point of inflection, assume it is.

x	а	b	С	d	е	f	g	h	i	j
f(x)										
f'(x)										
<i>f</i> ''(<i>x</i>)										


Place the values of f(x), f'(x), and f''(x) in increasing order for each point on the graph of f(x). For these problems, if the point appears to be a max, min, or point of inflection assume it is.

5.8 Sketching Graphs of Derivatives

Test Prep


- 23. The graph of the function f is shown in the figure to the right. For which of the following values of x is f'(x) negative and decreasing.
 - (A) a
 - (B) b
 - (C) c
 - (D) d
 - (E) e

24. Let f be a function that is continuous on the closed interval [0, 4]. The function f and its derivatives have the properties indicated in the table below.

x	0	0 < x < 1	1	1 < <i>x</i> < 2	2	2 < <i>x</i> < 3	3	3 < <i>x</i> < 4	4
f(x)	1	Pos.	0	Neg.	-2	Neg.	0	Neg.	-1
f'(x)	0	Neg.	-20	Neg.	0	Pos.	DNE	Neg.	0
$f^{\prime\prime}(x)$	0	Neg.	0	Pos.	0	Pos.	DNE	Pos.	0

- (a) Find the *x*-coordinate of each point at which *f* attains a maximum value or a minimum value.
- (b) Find the *x*-coordinate of each point of inflection on the graph of *f*.
- (c) In the *xy*-plane provided sketch the graph of a function with all the above characteristics of f.

- 25. The continuous function g is defined on the closed interval [-4, 5]. The graph of g consists of two line segments and a parabola. Let f be a function such that f'(x) = g(x).
 - a. Fill in the missing entries in the table below to describe the behavior of g' and g''. Indicate Positive, Negative, or 0. Give reasons for your answers.

x	-4 < x < -1	-1 < x < 2	2 < x < 3	3 < <i>x</i> < 5
g(x)	Negative	Negative	Negative	Negative
g'(x)				
<i>g</i> ′′(<i>x</i>)				

b. There is no value of x in the open interval (0, 3) at which $g'(x) = \frac{g(3)-g(0)}{3-0}$. Explain why this does not violate the Mean Value Theorem.

c. Find all values x in the open interval (-4, 5) at which the graph of f has a point of inflection. Explain your reasoning.

d. At what value of x does f attain its absolute minimum on the closed interval [-4, 5]? Give a reason for your answer.