5.8 Sketching Graphs of Derivatives

Practice

Calculus
The graph of a function f is shown. On the same coordinate plane, sketch a graph of f^{\prime}, the derivative of f. 1.

2.

The graph of \boldsymbol{f}^{\prime}, the derivative of \boldsymbol{f}, is shown. On the same coordinate plane, sketch a possible graph of \boldsymbol{f}. 3.

Match each function with the graph of its derivative.

Function		5. I 6. G 7. \qquad B 8. D 9. P 10. 0 11. H 12. F 13. L 14. M 15. J 16. E 17. N 18. A 19. K 20. C	Derivative	
5.	6.		A $f^{\prime}(x)$	B $f^{\prime}(x)$
	8.		(l\|l	D $f^{\prime}(x)$
9. $f(x)$	$10 .$ $f(x)$		\qquad	
11. $f(x)$	12. $f(x)$ \square		G	H $f^{\prime}(x)$
13. $f(x)$	14. $f(x)$		I	
15. C	16. $f(x)$		K	
17.	18.			
19. $f(x)$	20. \qquad		O $f^{\prime}(x)$ 	P

21. Using the figure below, complete the chart by indicating whether each value is positive $(+)$, negative $(-)$, or zero (0) at the indicated points. For these problems, if the point appears to be a max or min, assume it is. If it appears to be a point of inflection, assume it is.

x	a	b	c	d	e	f	g	h	i	j
$f^{\prime}(x)$	-	+	+	0	+	+	+	-	-	0
$f^{\prime}(x)$	+	+	-	0	+	0	-	0	+	+
$f^{\prime \prime}(x)$	-	-	0	+	0	-	-	+	+	+

Place the values of $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ in increasing order for each point on the graph of $f(x)$. For these problems, if the point appears to be a max, min, or point of inflection assume it is.
22.

5.8 Sketching Graphs of Derivatives

Test Prep

23. The graph of the function f is shown in the figure to the right. For which of the following values of x is $f^{\prime}(x)$ negative and decreasing.
(A) a
(B) b
(C) c
(D) d
(E) e

24. Let f be a function that is continuous on the closed interval $[0,4]$. The function f and its derivatives have the properties indicated in the table below.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$	4
$f(x)$	1	Pos.	0	Neg.	-2	Neg.	0	Neg.	-1
$f^{\prime}(x)$	0	Neg.	-20	Neg.	0	Pos.	DNE	Neg.	0
$f^{\prime \prime}(x)$	0	Neg.	0	Pos.	0	Pos.	DNE	Pos.	0

(a) Find the x-coordinate of each point at which f attains a maximum value or a minimum value.

$$
\begin{aligned}
& \max \text { at } x=0 \text { and } x=3 \\
& \min \text { at } x=2 \text { and } x=4
\end{aligned}
$$

(b) Find the x-coordinate of each point of inflection on the graph of f.

$$
x=1
$$

(c) In the $x y$-plane provided sketch the graph of a function with all the above characteristics of f.

25. The continuous function g is defined on the closed interval $[-4,5]$. The graph of g consists of two line segments and a parabola. Let f be a function such that $f^{\prime}(x)=g(x)$.
a. Fill in the missing entries in the table below to describe the behavior of g^{\prime} and $g^{\prime \prime}$. Indicate Positive, Negative, or 0. Give reasons for your answers.

x	$-4<x<-1$	$-1<x<2$	$2<x<3$	$3<x<5$
$g(x)$	Negative	Negative	Negative	Negative
$g^{\prime}(x)$	Negative	Positive	Negative	Positive
$g^{\prime \prime}(x)$	$\mathbf{0}$	$\mathbf{0}$	Positive	Positive

$g^{\prime}(x)$ is negative for $-4<x<-1$ and $2<x<3$ because g is decreasing there.
$g^{\prime}(x)$ is positive for $-1<x<2$ and $3<x<5$ because g is increasing there.
$g^{\prime \prime}(x)=0$ for $-4<x<-1$ and $-1<x<2$ the graph of g is linear there.
$g^{\prime \prime}(x)$ is positive for $2<x<3$ and $3<x<5$ because the graph of g is concave up there.
b. There is no value of x in the open interval $(0,3)$ at which $g^{\prime}(x)=\frac{g(3)-g(0)}{3-0}$. Explain why this does not violate the Mean Value Theorem.

The Mean Value Theorem can only be applied if g is differentiable on the interval. At $\boldsymbol{x}=2$, there is a sharp corner and g is not differentiable. Therefore it cannot be applied on the interval $0<x<$ 3.
c. Find all values x in the open interval $(-4,5)$ at which the graph of f has a point of inflection. Explain your reasoning.

The graph of f has a point of inflection at $x=-1, x=2$, and $x=3$. $f^{\prime}(x)=g(x)$ changes from increasing to decreasing at $x=2$, and $f^{\prime}(x)=g(x)$ changes from decreasing to increasing at $x=-1$ and $x=3$.
d. At what value of x does f attain its absolute minimum on the closed interval $[-4,5]$? Give a reason for your answer.

Because $f^{\prime}(x)=g(x)<0$ on the interval $(-4,5), f$ is decreasing on the interval $(-4,5)$. Therefore, the absolute minimum value of f on the closed interval $[-4,5]$ occurs at the right endpoint $x=5$.

