1. A particle's position along the x-axis is measured by $x(t)=t^{3}-15 t^{2}$ where $t>0$. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.
2. A particle's position along the y-axis is measured by $y(t)=t^{3}-12 t^{2}+45 t+7$ where $t>0$. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

For each table, selected values of x and $f(x)$ are given. Assume that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ do not change signs. Answer the questions for each table.
3.

x	$f(x)$
0	-10
1	-8
2	-5
3	-1

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
4.

x	$f(x)$
2	-7
3	-8
4	-10
5	-13

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
5. Given the function $g(x)=-x^{3}+2 x^{2}$, find the interval(s) when g is concave down and increasing at the same time.
6. Given the function $h(x)=x^{3}+x^{2}-5 x$, find the interval(s) when h is concave up and decreasing at the same time.

Answers to 5.9 CA \#1

1. Speeding up: $(0,5)$ and $(10, \infty)$ Slowing down: $(5,10)$	Speeding up: $(3,4)$ and $(5, \infty)$ Slowing down: $(0,3)$ and $(4,5)$	3a. Increasing 3b. Concave up
4a. Decreasing 4b. Concave down	$5 .\left(\frac{2}{3}, \frac{4}{3}\right)$	$6 .\left(-\frac{1}{3}, 1\right)$

