5.9 Connecting f, f', and f'' Calculus

Name:

CA #1

1. A particle's position along the x-axis is measured by $x(t) = t^3 - 15t^2$ where t > 0. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

2. A particle's position along the y-axis is measured by $y(t) = t^3 - 12t^2 + 45t + 7$ where t > 0. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

For each table, selected values of x and f(x) are given. Assume that f'(x) and f''(x) do not change signs. Answer the questions for each table.

4.

3.

x	f(x)
0	-10
1	-8
2	-5
3	-1

a. Is f(x) increasing or decreasing?

b. Is f(x) concave up or concave down?

x	f(x)
2	-7
3	-8
4	-10
5	-13

a. Is f(x) increasing or decreasing?

b. Is f(x) concave up or concave down?

5. Given the function $g(x) = -x^3 + 2x^2$, find the interval(s) when g is concave **down** and **increasing** at the same time.

6. Given the function $h(x) = x^3 + x^2 - 5x$, find the interval(s) when h is concave up and decreasing at the same time.

Answers to 5.9 CA #1			
1. Speeding up: $(0, 5)$ and $(10, \infty)$ Slowing down: $(5, 10)$	2. Speeding up: (3, 4) and (5,∞) Slowing down: (0, 3) and (4, 5)	3a. Increasing3b. Concave up	
4a. Decreasing4b. Concave down	5. $\left(\frac{2}{3}, \frac{4}{3}\right)$	6. $\left(-\frac{1}{3},1\right)$	