1. A particle's position along the x-axis is measured by $x(t)=t^{4}-4 t^{3}+2$ where $t>0$. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.
2. A particle's position along the y-axis is measured by $y(t)=3 t^{2}-2 t^{3}$ for $t \geq 0$. Find the intervals where the particle is speeding up. Find intervals where the particle is slowing down.

For each table, selected values of x and $f(x)$ are given. Assume that $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ do not change signs. Answer the questions for each table.
3.

x	$f(x)$
-3	-3
-2	2
-1	5
0	6

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
4.

x	$f(x)$
-8	-5
-7	-3
-6	0
-5	4

a. Is $f(x)$ increasing or decreasing?
b. Is $f(x)$ concave up or concave down?
5. Given the function $g(x)=x^{3}-\frac{9}{2} x^{2}-12 x+5$, find the interval(s) when g is concave down and decreasing at the same time.
6. Given the function $h(x)=-2 x^{3}+2 x^{2}+3$, find the interval(s) when h is concave up and increasing at the same time.

Answers to 5.9 CA \#2

1. Speeding up: $(0,2)$ and $(3, \infty)$ Slowing down: $(2,3)$	2. Speeding up: $\left(0, \frac{1}{2}\right)$ and $(1, \infty)$ Slowing down: $\left(\frac{1}{2}, 1\right)$	3a. Increasing 3b. Concave down
4a. increasing 4b. Concave up	$5 .\left(-1, \frac{3}{2}\right)$	$6 .\left(0, \frac{1}{3}\right)$

