6.13 Improper Integrals

Write your questions and thoughts here!

Improper integrals are integrals with infinite limits of integration or have an infinite discontinuity on the interval.

If f(x) is continuous on $[a, \infty)$, then $\int_a^{\infty} f(x) dx =$

If f(x) is continuous on $(-\infty, b]$, then $\int_{-\infty}^{b} f(x) dx =$ Provided the limits exist!

If the limit exists, the improper integral is said to _____ . If the limit does not exist, the integral is said to _____. 2. $\int_{1}^{\infty} \frac{1}{x} dx$

Improper *p*-integral: $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if

and diverges if

Write your questions and thoughts here! Remember the definite integral $\int_{a}^{b} f(x) dx$, requires the interval to be finite and the FTC requires that f(x) be continuous on [a, b]. If the integral does not meet these requirements, we may need to manipulate the problem.

Another form of the Improper Integral is $\int_{-\infty}^{\infty} f(x) dx$, with f(x) continuous on $(-\infty, \infty)$. Let x = c be any real number in the interval $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx.$$

(It's easiest to use 0 here for c). If either of these integrals diverge, then the whole diverges.

3.
$$\int_{-\infty}^{\infty} e^x \, dx$$

If f(x) is continuous on [a, b) and has an infinite discontinuity at b, then

$$\int_{a}^{b} f(x) \, dx =$$

If f(x) is continuous on (a, b] and has an infinite discontinuity at a, then $\int_{a}^{b} f(x) dx =$

$$4. \quad \int_0^2 \frac{x+2}{\sqrt{x^2+4x}} dx$$

If f(x) is continuous on the interval [a, b], except for some c in (a, b) at which f has an infinite discontinuity, then $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$. 5. $\int_{-1}^1 \frac{1}{x} dx$

6.13 Improper Integrals

Calculus Evaluate each integral.		Practice
1. $\int_{1}^{\infty} \frac{1}{x^2} dx$	2. $\int_0^\infty \frac{2}{x^2 + 4x + 3} dx$	
$3. \int_0^1 \frac{x+1}{\sqrt{x^2+2x}} dx$	$4. \int_{1}^{\infty} x e^{-x} dx$	

$5. \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$	6. $\int_{-1}^{0} \frac{1}{x^5} dx$
7. $\int_0^\infty e^{-x} dx$	⁹ Determine all the values of <i>n</i> for which $\int_{-1}^{1} dx$
7. J ₀ e ux	8. Determine all the values of p for which $\int_0^1 \frac{1}{x^p} dx$ converges.

6.13 Improper Integrals

9. If g is a twice-differentiable function, where g(2) = 1 and $\lim_{x \to \infty} g(x) = 8$, then $\int_2^{\infty} g'(x) dx$ is

10. If *R* is the unbounded region between the graph of $y = \frac{x}{(1+x^2)^2}$ and the *x*-axis for $x \ge 0$, then the area of *R* is

A) -1 (B) 0 (C) $\frac{1}{2}$ (D) infinite

11. For what values of p will $\int_1^\infty \frac{1}{x^{7p-3}} dx$ converge?

A)
$$p < 0$$
 (B) $p > 0$ (C) $p > \frac{4}{7}$ (D) $p < \frac{4}{7}$