Calculus

Write your questions and thoughts here!

Improper integrals are integrals with infinite limits of integration or have an infinite discontinuity on the interval.

If $f(x)$ is continuous on $[a, \infty)$, then $\int_{a}^{\infty} f(x) d x=$
If $f(x)$ is continuous on $(-\infty, b]$, then $\int_{-\infty}^{b} f(x) d x=$
Provided the limits exist!

1. $\int_{1}^{\infty} \frac{1}{x^{4}} d x$

If the limit exists, the improper integral is said to \qquad . If the limit does not exist, the integral is said to \qquad .
2. $\int_{1}^{\infty} \frac{1}{x} d x$

Improper p-integral: $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges if and diverges if

Remember the definite integral $\int_{a}^{b} f(x) d x$, requires the interval to be finite and the FTC requires that $f(x)$ be continuous on $[a, b]$. If the integral does not meet these requirements, we may need to manipulate the problem.

Another form of the Improper Integral is $\int_{-\infty}^{\infty} f(x) d x$, with $f(x)$ continuous on $(-\infty, \infty)$.
Let $x=c$ be any real number in the interval $(-\infty, \infty)$, then

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

(It's easiest to use 0 here for c). If either of these integrals diverge, then the whole diverges.
3. $\int_{-\infty}^{\infty} e^{x} d x$

If $f(x)$ is continuous on $[a, b)$ and has an infinite discontinuity at b, then

$$
\int_{a}^{b} f(x) d x=
$$

If $f(x)$ is continuous on $(a, b]$ and has an infinite discontinuity at a, then

$$
\int_{a}^{b} f(x) d x=
$$

4. $\int_{0}^{2} \frac{x+2}{\sqrt{x^{2}+4 x}} d x$

If $f(x)$ is continuous on the interval $[a, b]$, except for some c in (a, b) at which f has an infinite discontinuity, then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$.
5. $\int_{-1}^{1} \frac{1}{x} d x$

6.13 Improper Integrals

Calculus
Evaluate each integral.

1. $\int_{1}^{\infty} \frac{1}{x^{2}} d x \quad$ 2. $\int_{0}^{\infty} \frac{2}{x^{2}+4 x+3} d x$
2. $\int_{0}^{1} \frac{x+1}{\sqrt{x^{2}+2 x}} d x$
3. $\int_{1}^{\infty} x e^{-x} d x$
4. $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$
5. $\int_{-1}^{0} \frac{1}{x^{5}} d x$
6. $\int_{0}^{\infty} e^{-x} d x$
7. Determine all the values of p for which $\int_{0}^{1} \frac{1}{x^{p}} d x$ converges.

6.13 Improper Integrals

9. If g is a twice-differentiable function, where $g(2)=1$ and $\lim _{x \rightarrow \infty} g(x)=8$, then $\int_{2}^{\infty} g^{\prime}(x) d x$ is
A) -7
(B) 7
(C) 9
(D) nonexistent
10. If R is the unbounded region between the graph of $y=\frac{x}{\left(1+x^{2}\right)^{2}}$ and the x-axis for $x \geq 0$, then the area of R is
A) -1
(B) 0
(C) $\frac{1}{2}$
(D) infinite
11. For what values of p will $\int_{1}^{\infty} \frac{1}{x^{7 p-3}} d x$ converge?
A) $p<0$
(B) $p>0$
(C) $p>\frac{4}{7}$
(D) $p<\frac{4}{7}$
