Approximate the area under the curve using the given Riemann Sum.

1. $f(x)=\frac{1}{5} x^{3}-x+7$

Midpoint Riemann Sum on the interval [-1,2] with $n=3$ subintervals.
2. $f(x)=6 x+5$

Left Riemann Sum on $[-2,2]$ with $n=5$ subintervals.
3. $f(x)=-0.2 x^{2}-x+12$

Trapezoid approximation on the interval $[-1,3]$ with $n=4$ subintervals
4. Let $y(t)$ represent the weight loss per week of a contestant on the Biggest Loser, where y is a differentiable function of t. The table shows the weight loss per week recorded at selected times.

Time (week)	2	4	7	8	11
$\boldsymbol{y}(\boldsymbol{t})$ (pounds/week)	14	12	18	14	17

a. Use the data from the table and a left Riemann Sum with four subintervals. Show the computations that lead to your answer.
b. What does your answer represent in this situation?
5. Let $v(t)$ represent the rate of change of a hot air balloon over time, where v is a differentiable function of t. The table shows the rate of change at selected times. The balloons height at $t=0$ was 50 meters.

Time (minutes)	0	4	6	9	11
$\left.\begin{array}{c}\boldsymbol{v}(\boldsymbol{t}) \\ (m e t e r s \\ \hline\end{array} \mathbf{m i n}\right)$					

a. Use the data from the table and a trapezoidal approximation with four subintervals. Show the computations that lead to your answer.
b. What is the approximate height of the balloon at 11 minutes?
6. A particle moves along a horizontal line with a positive velocity $v(t)$, where v is a differentiable function of t. The time t is measured in seconds, and the velocity is measured in $\mathrm{cm} / \mathrm{sec}$. The velocity of the particle at selected times is given in the table below.

Time $(\mathbf{s e c})$	0	2	4	6	8	10	12	14	16
$\boldsymbol{v}(\boldsymbol{t})$ $(\mathbf{c m} / \mathbf{s e c})$	21	18	15	23	27	31	35	32	29

a. Use the data from the table and a midpoint Riemann Sum with four subintervals. Show the computations that lead to your answer.
b. What does your answer represent in this situation?

Answers to 6.2 CA \#1
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { 1. } 20.175 & 2.10 .4 & 3.42\end{array}
$$ \left\lvert\, \begin{array}{l}6. a. 416

b. The distance travelled by the

particle from 0 to 16 seconds.\end{array}\right.\right]\)| 4. a. 124 |
| :--- |
| b. The total pounds lost from week
 2 to week 11. |

