Calculus

Write your questions and thoughts here!

6.2 Approximating Areas with Riemann Sums

Notes

The graph of the function $g(x)$ is shown to the right. Approximate the area under the curve on the interval $[2,6]$ with n subintervals by using a left-rectangular approximation method.

This approximation method is called a \qquad . It was named after a German mathematician named Bernhard Riemann.

Below is the graph of $f(x)=4 x-\frac{1}{2} x^{2}$. Use Riemann Sums to find the approximation of the area under the curve.

Left-Riemann Sum

Right-Riemann Sum
On the interval [2,8], use 3 subintervals

Midpoint-Riemann Sum On the interval $[2,8]$, use 3 subintervals

Trapezoidal Sum
On the interval [2,8], use 3 subintervals

Overestimate or Underestimate?

Increasing function

Left-Riemann =

Right-Riemann =

Decreasing function

Right-Riemann $=$

Trapezoid estimation

Concave up =

Concave down $=$

Using Riemann Sums with a Table of Values

The rate at which water is being pumped into a tank is given by the continuous and increasing function $R(t)$. A table of selected values of $R(t)$, for the time interval $0<t<12$ minutes, is given below.

Time (minutes)	0	3	6	9	12
$R(t)$ (gallons/min)	7	13	18	23	27

Use the following Riemann sums (with the given intervals), to estimate the number of gallons of water pumped into the tank during the $\mathbf{1 2}$ minutes.
Right-Riemann sum with 4 subintervals \quad Left-Riemann sum with 4 subintervals

Is the approximation greater or less than the true value? Why?

Midpoint-Riemann sum with 2 subintervals

Is the approximation greater or less than the true value? Why?

Trapezoidal sum with 4 subintervals

Sketch the following rectangular approximations. Find the width of each subinterval.

3. Midpoint on the interval $[1,4]$ with $n=6$ subintervals Width of each subinterval $=$

4. Right Endpoint on [-2,2]
with $n=5$ subintervals Width of each subinterval $=$

5. Left Endpoint on [-2,4] with $n=10$ subintervals Width of each subinterval $=$

Approximate the area under the curve using the given Riemann Sum. Include a sketch!

6. $f(x)=\sqrt{9-x^{2}}$

Right Riemann sum with 3 subintervals on the interval

7. $f(x)=\frac{1}{2} x^{3}-x^{2}+x+2$

Left Riemann sum with 4 subintervals on the interval
$[1,3]$

8. $f(x)=6-\frac{1}{4} x^{2}$ Trapezoidal approximation with 3 subintervals on the interval $[-2,4]$.

6.2 Approximating Areas with Riemann Sums

Test Prep

9. Let $y(t)$ represent the rate of change of the population of a town over a 20 -year period, where y is a differentiable increasing function of t. The table shows the population change in people per year recorded at selected times.

Time years	0	4	10	13	20
$\boldsymbol{y}(\boldsymbol{t})$ people per year	2500	2724	3108	3697	4283

a. Use the data from the table and a right Riemann Sum with four subintervals to approximate the area under the curve.
b. What does your answer from part (a) represent?
c. Assuming that $y(t)$ is a continuous increasing function, is your approximation from part (a) greater or less than the true value? Why?
10. A rectangular pool gets deeper from one end of the pool to the other. The table shows the depth $h(x)$ of the water at 4 -foot intervals from one end of the pool to the other.

position, \boldsymbol{x} feet	0	4	8	12	16	20	24	28	32
$\boldsymbol{h}(\boldsymbol{x})$ feet	6.5	8	9.5	10	11	11.5	12	13	13.5

a. Use the data from the table to find an approximation for $h^{\prime}(10)$, and explain the meaning of $h^{\prime}(10)$ in terms of the depth of the pool. Show the computations that lead to your answer.
b. Use a midpoint Riemann Sum with 4 subintervals to approximate the area under the curve from 0 to 32 feet.
11. The rate at which customers are being served at StarBrusts is given by the continuous function $R(t)$. A table of selected values of $R(t)$, for the time interval $0<t<10$ hours, is given below. At $t=0$ there had already been 200 customers served.

Time hours	0	2	3	6	10
$\boldsymbol{R}(\boldsymbol{t})$ people/hour	37	44	36	42	48

Use a trapezoidal sum with four subintervals to approximate how many customers had been served after 10 hours.

