6.3 Summation Notation

Calculus

Name:

CA #1

Write a definite integral that is equivalent to the given summation notation. The lower limit for the integral is also given to help you get started.

1. Integral's lower limit = 0

$$\lim_{n\to\infty}\sum_{k=1}^n\left(\frac{\pi}{4n}\right)\tan\left(\frac{\pi}{4n}k\right)$$

2. Integral's lower limit = -1

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{8}{n} \right) \left[4 \left(-1 + \frac{8k}{n} \right) \right]$$

Write a summation notation equivalent to the definite integral.

 $3. \int_{-1}^{3} x^2 dx$

4. $\int_3^4 \ln x \, dx$

- 5. Which of the following expressions is equal to $\lim_{n\to\infty}\frac{4}{n}\left(\left(1+\frac{4}{n}\right)^3+\left(1+\frac{8}{n}\right)^3+\left(1+\frac{12}{n}\right)^3+\cdots+\left(1+\frac{4n}{n}\right)^3\right)$?
 - (A) $\int_{1}^{5} 1 + x^3 dx$

(B) $\int_0^4 (1+x)^3 dx$

(C) $\int_0^4 1 + x^3 dx$

- (D) $\int_{1}^{5} (1+x)^3 dx$
- 6. The expression $\frac{2}{9} \left[\left(\frac{1}{3 + \frac{2}{9} + 1} \right) + \left(\frac{1}{3 + \frac{4}{9} + 1} \right) + \left(\frac{1}{3 + \frac{6}{9} + 1} \right) + \dots + \left(\frac{1}{3 + \frac{18}{9} + 1} \right) \right]$ is a Riemann sum approximation of which of the following integrals?
 - $(A) \quad \int_0^2 \frac{1}{x+1} dx$

(B) $\int_{3}^{5} \frac{1}{x+1} dx$

(C) $\frac{1}{9} \int_0^2 \left(\frac{1}{3+x}\right) dx$

- (D) $\int_0^2 \frac{1}{3+x} dx$
- (E) $\frac{1}{9} \int_3^5 \frac{1}{2x+1} dx$

$xp\frac{t+x}{t} {}_{s}^{\varepsilon}$	$xp_{\mathfrak{E}}(x+\mathfrak{T}) \int_{\mathfrak{p}}^{\mathfrak{g}}$	$\left(\frac{n}{n} + \varepsilon\right) \operatorname{nl}\left(\frac{1}{n}\right) \sum_{t=\lambda}^{n} \min_{\infty \leftarrow n}$
.9	ي.	7.
$^{2}\left(\frac{\lambda h}{n} + 1 - \right) \left(\frac{h}{n} \right) \sum_{\lambda=\lambda}^{n} \min_{\infty \leftarrow n}$	$xp x_{b}^{\star} \int_{t^{-}}^{t^{-}}$	$\int_{0}^{\pi} \tan(x) dx$