Write a definite integral that is equivalent to the given summation notation. The lower limit for the integral is also given to help you get started.

1. Integral's lower limit $=0$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{\pi}{4 n}\right) \tan \left(\frac{\pi}{4 n} k\right)
$$

2. Integral's lower limit $=-1$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{8}{n}\right)\left[4\left(-1+\frac{8 k}{n}\right)\right]
$$

Write a summation notation equivalent to the definite integral.

3. $\int_{-1}^{3} x^{2} d x$
4. $\int_{3}^{4} \ln x d x$
5. Which of the following expressions is equal to $\lim _{n \rightarrow \infty} \frac{4}{n}\left(\left(1+\frac{4}{n}\right)^{3}+\left(1+\frac{8}{n}\right)^{3}+\left(1+\frac{12}{n}\right)^{3}+\cdots+\left(1+\frac{4 n}{n}\right)^{3}\right)$?
(A) $\int_{1}^{5} 1+x^{3} d x$
(B) $\int_{0}^{4}(1+x)^{3} d x$
(C) $\int_{0}^{4} 1+x^{3} d x$
(D) $\int_{1}^{5}(1+x)^{3} d x$
6. The expression $\frac{2}{9}\left[\left(\frac{1}{3+\frac{2}{9}+1}\right)+\left(\frac{1}{3+\frac{4}{9}+1}\right)+\left(\frac{1}{3+\frac{6}{9}+1}\right)+\cdots+\left(\frac{1}{3+\frac{18}{9}+1}\right)\right]$ is a Riemann sum approximation of which of the following integrals?
(A) $\int_{0}^{2} \frac{1}{x+1} d x$
(B) $\int_{3}^{5} \frac{1}{x+1} d x$
(C) $\frac{1}{9} \int_{0}^{2}\left(\frac{1}{3+x}\right) d x$
(D) $\int_{0}^{2} \frac{1}{3+x} d x$
(E) $\frac{1}{9} \int_{3}^{5} \frac{1}{2 x+1} d x$

$x p \frac{\mathbf{L}+x}{\mathbf{L}} \int_{\mathrm{s}}^{\varepsilon}$	$x p_{\varepsilon}(x+\tau) \int_{t}^{0}$	
	$x p x_{\star} \int_{L}^{\tau-}$	$x p(x) \text { uet } \int_{\frac{t}{4}}^{0}$

