Write a definite integral that is equivalent to the given summation notation. The lower limit for the integral is also given to help you get started.

1. Integral's lower limit $=-1$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{2}{n}\right)\left(-1+\frac{2 k}{n}\right)^{4}
$$

2. Integral's lower limit $=-7$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{4}{n}\right) \cos \left(-7+\frac{4 k}{n}\right)
$$

Write a summation notation equivalent to the definite integral.

3. $\int_{1}^{4} \frac{1}{x^{3}} d x$
4. $\int_{-1}^{2} e^{x} d x$
5. Which of the following expressions is equal to $\lim _{n \rightarrow \infty} \frac{3}{n}\left(\sin \left(7+\frac{3}{n}\right)+\sin \left(7+\frac{6}{n}\right)+\sin \left(7+\frac{9}{n}\right)+\cdots+\right.$ $\left.\sin \left(7+\frac{3 n}{n}\right)\right) ?$
(A) $\int_{0}^{3} \sin (x) d x$
(B) $\int_{0}^{3} 7+\sin (x) d x$
(C) $\int_{7}^{10} \sin (x) d x$
(D) $\int_{7}^{10} \sin (7+x) d x$
6. The expression $\frac{1}{100}\left(\left(\frac{1}{100}\right)^{3}+\left(\frac{2}{100}\right)^{3}+\left(\frac{3}{100}\right)^{3}+\cdots+\left(\frac{100}{100}\right)^{3}\right)$ is a Riemann sum approximation of which of the following integrals?
(A) $\int_{0}^{1}\left(\frac{x}{100}\right)^{3} d x$
(B) $\frac{1}{100} \int_{0}^{1}\left(\frac{x}{100}\right)^{3} d x$
(C) $\frac{1}{100} \int_{0}^{1} x^{3} d x$
(D) $\frac{1}{100} \int_{0}^{100} x^{3} d x$
(E) $\int_{0}^{1} x^{3} d x$

$x p_{\varepsilon} x \int_{\mathrm{L}}^{0}$	$x p(x) \text { uis } \int_{0 \mathrm{~L}}^{L}$	$\frac{u}{y \varepsilon}+\tau-\partial\left(\frac{u}{\varepsilon}\right) \stackrel{\tau=x}{\sum_{u}^{\infty} \underset{\sim}{\infty} \underset{\sim}{\omega} u}$
	$x p(x) \operatorname{soo} \int_{\varepsilon_{-}}^{L_{-}^{-}}$	$\boldsymbol{x} \boldsymbol{p}_{\boldsymbol{t}} \boldsymbol{x} \int_{\mathrm{L}}^{\mathrm{I}-}$

