6.3 Summation Notation

Calculus

Practice

Write a definite integral that is equivalent to the given summation notation. The lower limit for the integral is also given to help you get started.

1. Integral's lower limit $=0$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{\pi}{n}\right)\left(\cos \left(\frac{\pi}{n} k\right)\right)
$$

$$
\int_{0}^{\pi} \cos (x) d x
$$

2. Integral's lower limit $=-3$
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{5}{n}\right)\left(\sqrt[3]{-3+\frac{5 k}{n}}\right)$

$$
\int_{-3}^{2} \sqrt[3]{x} d x
$$

3. Integral's lower limit $=6$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{9}{n}\right)\left(\frac{1}{\left(6+\frac{9 k}{n}\right)^{2}}\right)
$$

$$
\int_{6}^{15} \frac{1}{x^{2}} d x
$$

Write a summation notation equivalent to the definite integral.
4. $\int_{-3}^{3} x^{2} d x$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{6}{n}\right)\left(-3+\frac{6 k}{n}\right)^{2}
$$

5. $\int_{2}^{5} \frac{1}{x} d x$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{3}{n}\right)\left(\frac{1}{2+\frac{3 k}{n}}\right)
$$

6. $\int_{0}^{7} \sqrt{x} d x$

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{7}{n}\right)\left(\sqrt{\frac{7 k}{n}}\right)
$$

7. Which of the following expressions is equal to $\lim _{n \rightarrow \infty} \frac{1}{n}\left(e^{1+\frac{1}{n}}+e^{1+\frac{2}{n}}+e^{1+\frac{3}{n}}+\cdots+e^{1+\frac{n}{n}}\right)$? B
(A) $\int_{0}^{1} e^{x} d x$

(C) $\int_{1}^{2} e^{1+x} d x$
(D) $\int_{0}^{2} e^{1+x} d x$
8. The expression $\frac{3}{7}\left(\frac{3}{7} \sin \left(\frac{3}{7}\right)+\frac{6}{7} \sin \left(\frac{6}{7}\right)+\frac{9}{7} \sin \left(\frac{9}{7}\right)+\cdots+\frac{21}{7} \sin \left(\frac{21}{7}\right)\right)$ is a Riemann sum approximation of which of the following integrals?
(A) $\int_{0}^{3}(x \sin x) d x$
(B) $\frac{1}{7} \int_{0}^{3}(x \sin x) d x$
(C) $\frac{1}{7} \int_{0}^{21}(\sin x) d x$
(D) $\int_{0}^{3}(\sin x) d x$
9. The expression $\frac{1}{5}\left(\ln \left(2+\frac{1}{5}\right)+\ln \left(2+\frac{2}{5}\right)+\ln \left(2+\frac{3}{5}\right)+\ln \left(2+\frac{4}{5}\right)+\ln \left(2+\frac{5}{5}\right)\right)$ is a Riemann sum approximation of which of the following integrals?
(A) $\int_{2}^{3} \ln \left(\frac{x}{5}\right) d x$
(B) $\frac{1}{5} \int_{0}^{5} \ln x d x$
(C) $\frac{1}{5} \int_{2}^{3} \ln x d x$
(D) $\int_{2}^{3} \ln x d x$
(E) $\int_{0}^{5} \ln (2+x) d x$

6.3 Summation Notation

10. Which of the following definite integrals are equal to $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(-1+\frac{4 k}{n}\right)^{2} \frac{4}{n}$
I. $\int_{-1}^{3} x^{2} d x$
II. $\int_{0}^{4}(-1+x)^{2} d x$
III. $\int_{0}^{1} 4(-1+4 x)^{2} d x$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III only
