6.4 Accumulation Functions

Write your questions and thoughts here!

Last lesson, we learned about the definite integral. $\int_a^b f(x) dx$ represents the area under the curve of f(x) on the interval [a, b].

Let us say we know the interval starts at a, but we do not know where it stops. That would give us where a is a constant and x is some unknown variable. We can represent that as a new function that looks like this:

$$F(x) =$$

- 1. Let $F(x) = \int_0^x f(t) dt$. Use the graph of f in the figure to find the values of the table on the interval $0 \le x \le 5$.
 - a) Complete the table.

x	0	1	2	3	4	5
F(x)						

This is called an _____

Fundamental Theorem of Calculus

If a is a constant and f is a continuous function, then

$$\frac{d}{dx} \int_{a}^{x} f(t) \, dt =$$

Derivatives and Integrals are _____ of each other. They cancel each other out, just like multiplication and division. In example 1, the graph of f is the derivative of F(x). So F(x) is considered the _____ of f(x).

Variations of the FTC

If a is a constant, f is a continuous function, and g and h are differentiable then

$$\frac{d}{dx} \int_{a}^{g(x)} f(t) \, dt =$$

$$\frac{d}{dx} \int_{h(x)}^{g(x)} f(t) \, dt =$$

1.
$$F(x) = \int_{2}^{x} (3t^2 + 4t) dt$$

Find
$$F'(x)$$
.
1. $F(x) = \int_2^x (3t^2 + 4t) dt$ 2. $F(x) = \int_{\frac{\pi}{2}}^{x^3} \sin(t) dt$

3.
$$F(x) = \int_1^{4x} h(t) dt$$

4.
$$F(x) = \int_{-x}^{x} 5t \, dt$$

5.
$$F(x) = \int_{2x}^{3x} (t^2 - t) dt$$

6.4 Accumulation Functions

Calculus

Practice

Calculus					
Find $F'(x)$.					
1. $F(x) = \int_2^x t^3 dt$	2. $F(x) = \int_0^x 5 dt$	3. $F(x) = \int_{-1}^{x} (4t - t^2) dt$			
- L	- 0				
4. $F(x) = \int_{\pi}^{x} \cos(t) dt$	5. $F(x) = \int_{1}^{x^2} t^3 dt$	6. $F(x) = \int_{\pi}^{x^2} \sin(t) dt$			
		π			
$ c\sin x 1$		$\int_{0}^{3x} c$			
$7. F(x) = \int_{\pi}^{\sin x} \frac{1}{t} dt$	$8. \ F(x) = \int_4^{x^2} 3\sqrt{t} dt$	9. $F(x) = \int_0^{3x} 2t dt$			
10. $F(x) = \int_0^{\tan x} t^2 dt$	11. $F(x) = \int_3^{x^2} \tan(t) dt$	12. $F(x) = \int_3^{g(x)} \sec(t) dt$			
$10. \ \Gamma(x) = \int_0^x t \ dt$	$11. \ F(x) = \int_3^x \tan(t) dt$	$\int_{0}^{\infty} I2. \ F(x) = \int_{0}^{\infty} \sec(t) dt$			

13.
$$F(x) = \int_1^{2x} f(t) dt$$

14.
$$F(x) = \int_{x}^{x+2} (4t+1) dt$$
 15. $F(x) = \int_{-x^2}^{x} (3t-1) dt$

15.
$$F(x) = \int_{-x^2}^{x} (3t - 1) dt$$

16.
$$F(x) = \int_{-x}^{x} t^3 dt$$

17.
$$F(x) = \int_{2x}^{3x} t^2 dt$$

6.4 Accumulation Functions

Test Prep

18. Let $g(x) = \frac{d}{dx} \int_0^x \sqrt{t^2 + 9} \, dt$. What is g(-4)?

- (A) -5
- (B) -3
- (C) 3
- (D) 4
- (E) 5

19.

The graph of a function f on the closed interval [0,6] is shown above. Let $h(x) = \int_0^x f(t) dt$ for $0 \le x \le 6$. Find h'(3).

(A) -2

(B) 0

(C) 2

(D) Does not exist

The figure above shows the region A, which is bounded by the x- and y-axes, the graph of $f(x) = \frac{1-\cos x}{x}$ for x > 0, and the vertical line x = b. If b increases at a rate of $\frac{\pi}{2}$ units per second, how fast is the area of region A increasing when $b = \frac{\pi}{3}$?