Accumulation Functions are of the form $F(x)=\int_{a}^{x} f(t) d t$, where a is a constant. Recognize that
$F^{\prime}(x)=f(x)$.
Today's lesson is a review of a lot of things from Unit 5 . We will analyze the first and second derivative to understand the behavior of a function.

Behavior of Accumulation Functions

$\boldsymbol{F}(\boldsymbol{x})$ is/has...	...when	or...
increasing		
decreasing		
relative max		
relative min		
concave up		
concave down		
a point of inflection		

1. Let $g(x)=\int_{a}^{x} f(t) d t$ where the graph of f is shown below and a is a constant.

Find the following x-values.

a. Relative minimum of g.	b. Relative maximum of g.	c. Intervals where g is concave up.
d. Intervals where g is concave down.	e. Point of inflection(s) of g.	f. If $g(1)=5$, what is the maximum value of g on the interval $[1,5]$?

2. Let $g(x)=\int_{0}^{\frac{x}{2}+5} f(t) d t$ where the graph of f is shown to the right. Find the x value where g has a relative maximum.

6.5 Behavior of Accumulation Functions

Calculus

Practice

1. Let $g(x)=\int_{a}^{x} f(t) d t$ with the graph of f shown above and a is a constant. Find the x-values of g regarding each of the following conditions.

each of the following conditions.		
a. Relative minimum(s)	b. Relative maximum(s)	
c. Concave up	d. Concave down	
e. Increasing	f. Decreasing	g

g. Point(s) of inflection
h. If $g(3)=-2$, what is the maximum value of g on the interval $[3,7]$?
i. Given $h(x)=\int_{0}^{2 x-7} f(t) d t$. Find the x-value where h has a relative minimum.
2. Let $g(x)=\int_{a}^{x} f(t) d t$ with the graph of f shown above and \boldsymbol{a} is a constant. Find the \boldsymbol{x}-values of \boldsymbol{g} regarding each of the following conditions.

a. Relative minimum(s)	b. Relative maximum
c. Concave up	d. Concave down
e. Increasing	f. Decreasing
h. If $g(2)=1$, what is the maximum value of g on the interval $[2,9]$?	

 the interval $[2,9]$?
i. Given $h(x)=\int_{0}^{\frac{x}{2}+5} f(t) d t$. Find the x-value where h has a relative minimum.
3. Calculator active problem. Let f be the function given by $f(x)=\int_{1 / 10}^{x} \sin \left(\frac{1}{t}\right) d t$ for $\frac{1}{10}<x<1$. At what value(s) of x does f attain a relative maximum?
4. Calculator active problem. Let h be the function given by $h(x)=\int_{1}^{x}\left(1-e^{\cos t}\right) d t$ for $1<x<10$. At what value(s) of x does h attain a relative minimum?
5.

x	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$	4	$4<x<5$
$f(x)$	2	Positive	0	Negative	-3	Negative	0	Positive
$f^{\prime}(x)$	-1	Negative	0	Negative	DNE	Positive	0	Negative
$f^{\prime \prime}(x)$	1	Positive	0	Negative	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval $[1,5)$. The function f is twice differentiable except at $x=3$. The function f and its derivatives have the properties indicated in the table above.

Let g be the function defined by $g(x)=\int_{2}^{x} f(t) d t$ on the open interval $(1,5)$.
a. For $1<x<5$, find all critical points of g.
b. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer.
c. For $1<x<5$, find all values of x at which g has a point of inflection.

6.5 Behavior of Accumulation Functions

6.

The graph of the function f is shown above. Let $g(x)=\int_{0}^{x} f(t) d t$.
a. Find the value of $g^{\prime}(6)$.
b. Find the value of $g^{\prime \prime}(6)$.
7.

The graph of a differentiable function g is shown above. If $h(x)=\int_{0}^{x} g(t) d t$, which of the following is true?
(A) $h(4)<h^{\prime}(4)<h^{\prime \prime}(4)$
(B) $h(4)<h^{\prime \prime}(4)<h^{\prime}(4)$
(C) $h^{\prime}(4)<h(4)<h^{\prime \prime}(4)$
(D) $h^{\prime \prime}(4)<h(4)<h^{\prime}(4)$
(E) $h^{\prime \prime}(4)<h^{\prime}(4)<h(4)$

