

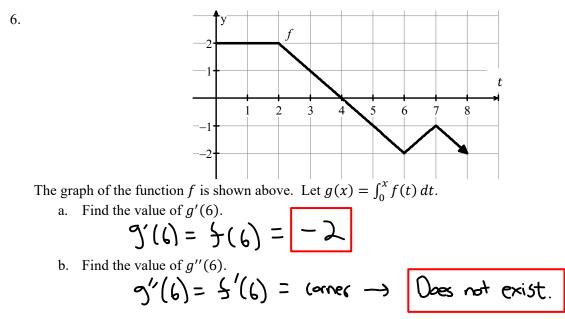
3. Calculator active problem. Let f be the function given by $f(x) = \int_{1/10}^{x} \sin\left(\frac{1}{t}\right) dt$ for $\frac{1}{10} < x < 1$. At what value(s) of x does f attain a relative maximum?

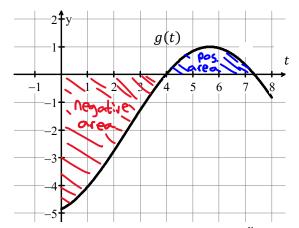
4. Calculator active problem. Let h be the function given by $h(x) = \int_{1}^{x} (1 - e^{\cos t}) dt$ for 1 < x < 10. At what value(s) of x does h attain a relative minimum?

5.

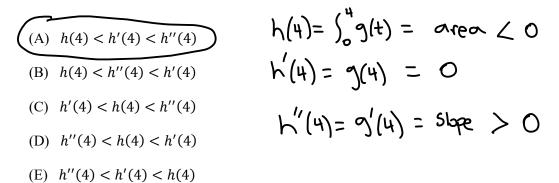
x	1	1 < x < 2	2	2 < x < 3	3	3 < x < 4	4	4 < <i>x</i> < 5
f(x)	2	Positive	0	Negative	-3	Negative	0	Positive
f'(x)	-1	Negative	0	Negative	DNE	Positive	0	Negative
$f^{\prime\prime}(x)$	1	Positive	0	Negative	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval [1, 5). The function f is twice differentiable except at x = 3. The function f and its derivatives have the properties indicated in the table above.


Let g be the function defined by $g(x) = \int_2^x f(t) dt$ on the open interval (1, 5).


- a. For 1 < x < 5, find all critical points of g. (.P. of g when g' (or f(x)) = 0 or DNE X=2X=4
- b. Determine whether g has a relative maximum or a relative minimum at each of these values. Justify your answer. Rel. mox at X=2 because g' changes sign from pos. to neg.

c. For 1 < x < 5, find all values of x at which g has a point of inflection. P. when g'' (or f'(x)) charges sign


Test Prep

6.5 Behavior of Accumulation Functions

The graph of a differentiable function g is shown above. If $h(x) = \int_0^x g(t) dt$, which of the following is true?

